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ABSTRACT 
 
 
 
Internet Protocol version six (IPv6) is only sparsely implemented in the world 

today.  However, as it gains popularity, it will grow into a vital part of the Internet and 

communications technology in general.  Many large organizations, including the 

Department of Defense, are considering deployment of IPv6.  Experiments will ensure 

that IPv6 will work with both existing and planned applications.  One area where its 

success is essential is that of systems designed to support multilevel security. 

This thesis focuses on the design and implementation issues that accompany a 

migration of the Monterey Security Enhanced Architecture (MYSEA) from Internet 

Protocol version four (IPv4) to IPv6.  The research for this thesis consists of two major 

parts:  a functional comparison between the IPv4 and IPv6 designs, and a prototype 

implementation of MYSEA in an IPv6 environment.   

The current MYSEA prototype relies on a subset of Network Address Translation 

(NAT) functionality to support the network’s operation; and, since IPv6 has no native 

support for it, a NAT mechanism was created in IPv6. 

This thesis provides a preliminary examination of IPv6 in MYSEA, which is a 

necessary step in determining whether the new protocol will assist with or detract from 

the enforcement of MYSEA policies.   
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I. INTRODUCTION 
 

In the Internet Protocol version six (IPv6), also known as the next generation 

Internet Protocol, lies the future of communications for networked computers and 

possibly the future of all telecommunications.  Designed to augment and eventually 

replace the aging Internet Protocol version four (IPv4), the current standard, IPv6 stands 

in a position to replace the more than two-decade-old Internet Protocol (IP).  The design 

of IPv6 likely contains improvements over the drawbacks of IPv4, some of which are 

causing concern among the community of Internet designers and engineers.  Two 

examples of these trouble areas are the shrinking of the pool of available IP addresses, 

and the growth in size of routing tables stored on Internet routers.  With time, the IP 

address space is becoming more and more stretched because of the unanticipated growth 

of the Internet.  The growth of routing tables is attributable to inefficiencies of the initial 

IP addressing hierarchy.  The web address cited in [PROBLEM] provides a synopsis of 

the history of the Internet’s addressing troubles, and RFC 1752 [REC_IPng] provides a 

history of the birth of IPv6, including why it was developed.  Additionally, new features 

in IPv6 may help to augment security and/or help IP to provide improved services.  

While IPv6 differs from IPv4, it is designed to perform the same basic functions 

as the original Internet Protocol.  With this fact in mind, it is natural to hypothesize that 

the design of IPv6 improves on the original IP design while not adversely affecting the 

services it provides.  The vastly larger address space and the native support for Internet 

Protocol Security (IPSEC) are two positive changes IPv6.   

A. PURPOSE OF STUDY 

There exist multiple reasons for performing this study.  First of all, the 

Department of Defense (DoD) has committed itself to full deployment of Internet 

Protocol version six (IPv6) by the 2008 fiscal year [MEMO].  Secondly, the Internet is in 

the beginning stages of a transition to IPv6.  Finally, new features in IPv6 have the 

potential to improve IP services in various applications.  A clear determination of this 

potential is necessary before transitioning systems to IPv6. 
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The Monterey Security Enhanced Architecture (MYSEA) is a multilevel secure 

local area network (MLS LAN) that is designed to manage data at various levels of 

classification, and to allow untrusted commercial-off-the-shelf (COTS) client machines to 

securely access that data.  This research specifically focuses on the design considerations 

of running MYSEA on an IPv6 network vice an IPv4 network.  From a design 

perspective, it explores the areas in which IPv6 can assist in MYSEA’s ability to enforce 

network policy. 

In anticipation of making a transition to IPv6, it is necessary to analyze the costs 

and benefits of running MYSEA on an IPv6 network.  Building MYSEA with native 

IPv6 functionality may even support and benefit the architecture more than IPv4.  For a 

system like MYSEA to successfully complete a transition from IPv4 to IPv6, its 

designers and implementers must prepare early and understand any modifications this 

transition will demand.  The research documented in this paper will provide the 

foundation of the work to build MYSEA in an IPv6 environment. 

This work includes a review and comparison of the IPv4 and IPv6 designs.  In 

addition, an IPv6 MYSEA prototype has also been developed.  The MYSEA design 

requires functionality that is provided by network address translation (NAT) in IPv6; 

however, there currently are no – and there likely never will be any – NAT mechanisms 

defined or implemented for IPv6.  This situation required either finding a replacement 

mechanism for NAT or implementing NAT in IPv6.  The implementation chapter, 

Chapter IV, contains the details of this work. 

B. OVERVIEW OF CHAPTERS 

This section contains an overview of the remaining chapters of this paper. 

1.  Chapter II, “The Monterey Security Enhanced Architecture 
(MYSEA)” 

Beginning with brief description and the reasoning for its conception, Chapter II 

provides a fairly detailed description of the Monterey Security Enhanced Architecture.  

The chapter outlines the design of each component, stating the status of each in the 

current prototype, and it ends with a brief discussion of the intention for MYSEA to 

support the provision of Quality of Security Service (QoSS). 

2 



2. Chapter III, “The Internet Protocol” 

Chapter III summarizes the design specifics of Internet Protocol versions four and 

six.  It also briefly discusses Internet Protocol security (IPsec) and its disposition in 

MYSEA with both IPv4 and IPv6.  Next, it contains a discussion of some mechanisms 

currently being used and developed for the transition of the Internet to IPv6; and lastly, it 

presents the results of the comparison between the designs of the two protocols. 

3. Chapter IV, “Implementation of IPv6 MYSEA Prototype” 

This chapter describes the work involved in implementing the IPv6 MYSEA 

network for this thesis.   

4. Chapter V, “Conclusions and Future Work” 

Chapter V contains the overall conclusions from the thesis work and it 

summarizes the conclusions from the analysis of the IPv4 and IPv6 designs.  It concludes 

with a discussion of future work.   
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II. THE MONTEREY SECURITY ENHANCED ARCHITECTURE 
(MYSEA) 

 

The Monterey Security Enhanced Architecture (MYSEA) manages information at 

several classification levels, and it is built upon trusted security services and integrated 

operating system mechanisms [MYSEA ARCH].  The system as a whole is intended to 

act as a high-assurance distributed operating environment that enforces a multilevel 

security policy.  It is designed to interoperate with commercial computer components and 

to make use of pre-existing productivity tools.  Such a design allows the current DoD 

investment in commercial personal computers (PCs) to be integrated into an environment 

where more trusted elements enforce critical security policies [MYSEA PROJ].  The 

system configuration supports traditional multilevel secure (MLS) networks, coalition 

networks, joint ventures between various departments of the U.S. government, and 

enforcement of mandatory policies.   

A.  THE REASON FOR MYSEA 

The architectural design of MYSEA responds to the problem of having to 

maintain separate networks in order to handle data of differing security levels or coalition 

classifications.  Take, for example, the coalition problem.  A coalition consists of a 

diverse group of entities with a common goal.  Each of these entities must have the 

ability to exclusively share information with its own members, and each will invariably 

share some information with the rest of the coalition and the coalition commander.  There 

exist two approaches for providing the desired services.   

1. Build a physically separated network for each entity that allows exclusive 
communications between its members, and build another stand-alone network 
to which all entities have access.  This second network allows information 
sharing across entities, but requires a “sneaker-net” mechanism in order to 
move information to and from the shared network. 

 
2. Construct a single MLS network, relying on trusted components to enforce 

network policy, and use security labels to place each entity’s private data into 
a separate security level.  Other labels permit information sharing across 
entities. 
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While effective in separating data, the first approach requires a great deal more 

hardware and physical space than the second.  Every individual would require a different 

computer workstation for every network to which he has access.  In addition, the number 

of networks and workstations increases as the number of coalition members increases.  

The second approach provides precisely the same functionality as the first, but with fewer 

physical resources and far fewer infrastructure requirements.  In MYSEA, every data 

object, a file for instance, carries a security label that corresponds to a predefined security 

level.  A user with authorization to access a particular data object must be logged in at a 

security level that is equal to or greater than the security level of that object’s label.  In 

true MLS, a user can read data at his current security level as well as all levels below that.  

The term “logged in” refers to using some means of authenticating oneself to the system, 

e.g., password, biometrics, retinal scan, etc.  Still, a potentially large problem for both 

approaches is a lack of assurance that separation and integrity of network data is 

preserved.  MYSEA overcomes that shortfall through the use of high assurance policy 

enforcing components.   

The realization of the concepts that drive MYSEA’s design and implementation 

will mitigate the current situation of government and DoD systems not providing 

adequate security and assurance for critical data.  As stated in [MYSEA ARCH], 

“industrial systems run the risk of economic espionage, while the lack of policy-enabled 

Joint Command and Control Systems constrains military operations.”  The following two 

reasons largely contribute to the lack of adequate security on proprietary and open-source 

computer systems:  

 
1. The use of discretionary access controls (DAC, described below) have 

become widespread. 
 
2. Flaws in system design and / or implementation create unforeseen security 

holes that require patches after the deployment of a system.   
 

A system that depends on DAC allows users to dictate access control policy (i.e., 

set file permissions) “on the fly;” and, as a result, it is highly susceptible to Trojan Horse 

attacks.  In these attacks, a malicious program performs harmful actions under the 

identity of a compromised user, so it is able to manipulate the permissions of all objects 

6 



to which that user has access.  Mandatory Access Controls (MAC) present an alternative 

security enforcement mechanism for a system.  In contrast to a DAC system, a system 

enforcing a MAC policy prohibits malicious software from performing actions that 

violate the system’s security policy (e.g., modifying file permissions and giving all user 

identities (UIDs) read access to a file to which a limited number of UIDs should have 

access).  A robust security policy will disallow applications acting on behalf of a user 

from performing potentially malicious actions such as the permissions of a restricted file.  

The word restricted refers to objects to which a limited number of entities should have 

access. 

Systems released without sufficient security engineering, and formal code 

verification in some cases, frequently require subsequent system patches to correct 

unwanted behavior.  In particular, these systems risk subversion (the insertion of a 

backdoor) by a malicious insider.  The existence of “Easter Eggs” in popular programs 

serves as an illustration of the potential for malicious developers to insert backdoors into 

programs and operating systems (see [SUBVERSION]).   

MYSEA’s design makes security a non-functional requirement along with the 

functional requirements.  Security remains a primary focus throughout the system 

development process.  In MYSEA, the machine that stores and serves data enforces a 

multilevel policy.  The policy is global and persistent; therefore, it affects all users of the 

system and remains in place for all network operations.   

B.  DESIGN AND COMPONENTS 

The MYSEA architecture consists of the following major parts, which are 

illustrated in Figure 1:   

• A high assurance server enforcing a MLS policy. 

• Commercial off-the-shelf (COTS) PC workstations. 

• A Trusted Path Extension (TPE) device between each workstation and the rest of the 
network.  [MYSEA ARCH] 

The TPE creates a trusted path between the workstation and the trusted computing 

base (TCB) at the server.  A trusted path ensures that only the authentication device 

receives the user’s authentication data.  Moreover, the TPE provides a guaranteed 
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authentic connection for the client workstation and server, and it guarantees secure 

communications between the two.  Figure 1 depicts a MYSEA network set up in the way 

that a coalition network might appear.  The shadings illustrate the fact that each member 

only has access to his own organization’s data.  The multi-shaded workstation represents 

a coalition command workstation from which authorized users have access to all levels of 

data.  The pattern in the MLS server and the TPEs indicates that they are trusted 

components. 

 
MLS 

Server 

Figure 1.   MYSEA design 
 

While this architecture consists of three major parts, the design requires the server 

to view the TPE and workstation as a single entity.  In essence, the TPE becomes a 

necessary component of the workstation.  It cuts off workstation communications until a 

user authenticates himself to the server through the TPE, thereby opening the 

communications channel and allowing the person to access the server through the 

workstation   
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Note that this discussion of MYSEA serves only as a cursory view of the purpose, 

design, and implementation of the architecture.  Refer to [MYSEA PROJ] and [MYSEA 

ARCH] for more in-depth discussions. 

1.  The MYSEA Server 

In the current prototype, the MYSEA server runs on an Intel x86 PC whose 

operating system (OS) is a modified version of OpenBSD.  The modifications enable the 

OS to add security labels to the data it stores.  The OS enforces the security policy while 

supporting the use of untrusted application servers that are compatible with existing 

COTS clients.  For instance, a derivation of the popular Apache web server may run on 

top of the OS and serve web pages to users who are logged in to the workstations; 

however, in spite of any security flaws existing in the server application, given that OS 

enforces true MLS, it cannot break the OS-enforced security policy.  The data that the 

server’s OS maintains is labeled to separate it into security domains such as classified and 

unclassified.  The ultimate implementation of the server will exist on a high assurance 

commercial server. 

2.  The MYSEA Workstation 

The ultimate vision of the MYSEA workstation is a diskless machine containing 

the following elements: a processor, a user interface, and I/O services that support 

network communications and data transfer [MYSEA ARCH].  The existence of the TPE 

allows the PC to be an untrusted device.  Since the PC is not trusted, the specific OS of 

the workstation can be anything with which a user is comfortable.  The architecture 

intends that the PCs have the ability to support application protocol clients, such as a web 

browser, so that users can access data available through application protocol servers 

running on the MYSEA servers.  An important aspect of the workstations is that they are 

intended to be diskless machines with enough random access memory (RAM) to support 

a user’s client applications.  A diskless workstation helps to prevent storage of sensitive 

information at the workstation.  The RAM and other storage media on the workstation, if 

any, will be purged when a user changes session levels or logs out.   
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3. The Trusted Path Extension (TPE) 

As stated above, the TPE exists logically as a part of the workstation; however, 

from a design perspective, the TPE is obviously a separate entity.  The workstation is an 

untrusted entity, so the TPE extends the server’s trust to the user through the trusted path 

that it creates.  It physically resides between the workstation and the server, acting as the 

only conduit through which the workstation can reach the rest of the network.   

The TPEs Functionality includes controlling the workstation, securely handling 

I/O from the user, and maintaining a trusted path connection with the server.  Through 

the TPE’s I/O interface, the user authenticates himself to the server by password, 

biometrics, or some other form of identification and authentication.  After successful 

authentication, he contacts the server through the TPE and requests a session level at 

which to operate.  When the user receives permission to operate at the requested session 

level, the workstation becomes accessible and the user conducts business at the selected 

security level.  The current MYSEA prototype implements the TPE on a handheld PC 

equipped with two network interface cards (NICs).  This implementation requires the 

workstation and the server to lie on two distinctly separate networks.  While this 

separation would likely be the natural case in the deployable MYSEA implementation, 

the use of two NICs in the TPE causes it to be a requirement in this prototype.  The TPE 

is truly a bridge between the server and workstation as it acts as a pseudo-router and 

routes packets between the server and client networks.  It overcomes physical separation 

from the workstation by gaining a logical oneness (from the server’s point of view) with 

it through the use of NAT.  Because of NAT, the server only explicitly communicates 

with the TPE, knowing nothing of the existence of the workstation behind it.  When a 

user is logged in, the TPE forwards relevant traffic between the workstation and the 

server (See the NAT discussion below for more details on network address translation). 

Although the trusted path extension currently resides on a handheld PC that runs 

the Linux OS, it will ultimately not run on a general-purpose operating system.  The 

TPE’s required functionality does not warrant use of the complex tools and services that a 

full operating system generally provides.  Therefore, the TPE will ultimately be an 
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embedded system that essentially functions as an extension of the server.  It will have 

obtained a high assurance, EAL7 evaluation with EAL6 applications. 

C. QUALITY OF SECURITY SERVICE (QOSS) 

The MYSEA architecture, specifically the server, is intended to support 

integration with an external quality of service manager (QoSM).  The server provides a 

security-aware interface to this external resource manager called the MYSEA QoSS 

manager.   

The notion of QoSS has to do with managing security-related functionality, such 

as amount or level of encryption, as a QoS parameter.  Implementation of this idea means 

defining variable levels of security services for a network.  Similar to response time and 

image fidelity, variable levels of security services and requirements can be presented to 

users or network processes in the form of acceptable ranges [QOSS].  With these 

security-related variables, the QoSM has a greater ability to meet overall user and 

network demands.   
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III. THE INTERNET PROTOCOL 
 

The Internet Protocol has served as the communications standard of the Internet 

since its birth more than two decades ago.  This chapter contains summaries of the 

designs of the current Internet Protocol, IPv4, and the future Internet Protocol, IPv6.  A 

discussion of IPsec, a protocol suite that addresses security services provided at the 

network layer of communications, follows those design summaries.  Following the IPsec 

section is the comparison of the IPv4 and IPv6 protocols, and the final section of this 

chapter contains an introduction to the proposed IPv4-to-IPv6 transition mechanisms for 

the Internet. 

A.  INTERNET PROTOCOL VERSION FOUR (IPV4) 

This section presents an overview of IPv4 beginning with the purpose for its 

development.  It assumes the reader has some familiarity with the TCP/IP stack. 

1. Motivation 

The Internet Protocol was developed to provide a mechanism for the transmission 

of data between hosts on interconnected, packet-switched networks [IP].  Before IP, it 

was impossible for hosts on different types of networks to communicate.  For example, a 

host on a Token Ring network could not transmit data to a host on an Ethernet.  This 

inability to communicate exists because of incompatibilities such as differing 

transmission speeds, signaling methods, and synchronization techniques.  IP provides a 

universal means of communications for host computers that reside on different types of 

networks, as well as for hosts that are separated by a large geographic margin.  The 

protocol’s assumptions are as follows:  both hosts understand IP; each host understands 

the communications protocol that its respective local network uses; each host has the 

ability to communicate with a router, possibly part of a group of routers, with the ability 

to forward data from one host network to the other.  Since the two hosts cannot 

necessarily communicate through their native protocols, they must use IP to carry their 

data, and they must depend on the router(s) to deliver that data to the correct destination.   

The Internet Protocol design has an intentionally limited scope to perform two 

primary functions: addressing and fragmentation [IP].  Every host must have an IP 
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address, and all IP addresses must conform to the IP addressing hierarchy defined in [IP] 

and discussed below.  Fragmentation refers to the breaking of large datagrams into 

fragments so that each one is no larger than a network’s maximum transmission unit 

(MTU).   While IP has no error control abilities, it depends on ICMP (Internet Control 

Message Protocol) for error reporting.  The IP implementation treats ICMP like an upper 

level protocol, but it is an integral part of IP, and all hosts and routers must implement it 

[ICMP]. 

2. Header Structure 

Each IP datagram begins with the IP header, and the payload data follows 

immediately thereafter.  This header contains identifying data for the datagram as well as 

useful information for processing that data.  Figure 2 contains a simple illustration of the 

IPv4 header. 
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |Version|  IHL  |Type of Service|          Total Length         | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |         Identification        |Flags|      Fragment Offset    | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |  Time to Live |    Protocol   |         Header Checksum       | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |                       Source Address                          | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |                    Destination Address                        | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 |                    Options (including padding)                | 
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 2.   IPv4 Header [IP] 

The dashes between the plus signs represent one bit, and the numbers above the 

figure indicate a bit count (modulus 10).  Each row is thirty-two bits long.  The words in 

the fields convey what the bits in that field represent.  A brief description of each field 

follows: 

• Version:  The Internet Protocol version 

• IHL:  Internet header length.  This field contains the length of the header in thirty-two 
bit words. 

• Type of Service:  Bits in this field specify abstract quality of service parameters. 

• Total Length:  The total length of the datagram in bytes. 

• Identification:  A value that uniquely identifies each datagram sent by a host. 
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• Fragment offset:  This field indicates the position of a fragment relative to other 
fragments with the same identification value. 

• Time to live (TTL):  Specifies the number of routers the datagram can pass through.  
Each time a router processes a datagram, it decrements this value.  When the TTL 
reaches zero, the next router discards the datagram. 

• Protocol:  This field specifies the next level protocol in the payload following the 
header – TCP, for instance. 

• Header checksum:  An error detection checksum for the IP header. 

• Source address:  The originating IP address of the datagram. 

• Destination address:  The final destination IP address of the datagram. 

• Options:  The sender may specify various options within this field.  It has a variable 
length and may require padding to ensure that it ends on a thirty-two bit boundary. 

See [IP] for a more in-depth discussion of the IP header and the fields within it.   

a. Options 

The options field of the IPv4 header is of variable length.  This variability 

is because a variable number of options may exist, and nearly every option has a variable 

non-static size.  Following is the list of available options contained in [IP]– not including 

options that perform no operations – along with a brief description: 

• Security – Contains security and compartmentation information. 

• Loose Source Routing – Specifies a route for the IP datagram to follow, but allowing 
for non-specified nodes to process the datagram. 

• Strict Source Routing – Specifies a strict route for the datagram to follow, intending 
that no other nodes process the datagram. 

• Record Route – Records the IP address of each node that processes the datagram. 

• Stream ID – Designed to carry a sixteen bit SATNET stream identifier through 
networks that do not support the stream concept. 

• Internet Timestamp – Each forwarding node inserts a timestamp into this field. 

3. Security 

Speaking only in terms of authentication and data encryption, the original design 

of IP totally lacks security mechanisms.  The security option, described above, only exists 

as a means of compartmenting the data carried in the datagram.  Furthermore, the 

“security” that it provides is effective only so long as the receivers of IP traffic obey the 

standard.  Bear in mind, however, that just as IP depends on upper level protocols for 
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functions like error control, those higher-level protocols may also provide the necessary 

functionality (such as encryption) for securing the payload. 

Applications can provide the means of ensuring data confidentiality, integrity, and 

authenticity.  Part of the problem with depending on applications is that there is no 

standard, and the methods of securing data vary from application to application.  

Furthermore, applications sometimes fail in providing adequate security, and the results 

of such failure can be disastrous.  Besides, in MYSEA, as is the case in nearly all trusted 

computing frameworks, the applications are untrusted.  This means that all applications, 

malicious or not, are treated as though they might be malicious.  This treatment results 

from the simple fact that there is no guarantee that the application performs all of its 

declared operations and nothing more.  Designers of a TCB would actually prefer that 

applications not perform such actions as encryption because the TCB must be able to 

enforce the security policy on inbound and outbound data. 

4. Addressing Architecture 

In text representation, one may represent an IP address in one of two forms -- 

bitwise notation and dotted decimal notation.  Dotted decimal is the more widely used 

and more recognizable notation.  Each IP address may be logically separated into two 

parts.  The first group of bits represents the network address, and the remaining bits 

denote the IP address of a host on that network.  The network mask is the set of bits that 

distinguishes which portion of the address identifies the network and which portion 

identifies the node [CISCO].  Figure 3 shows a Class A address along with its network 

mask in both dotted decimal and bitwise formats.   

 
 8.20.15.1 = 00001000.00010100.00001111.00000001 
 255.0.0.0 = 11111111.00000000.00000000.00000000 
     ------------------------------------------------ 
                 NET ID | <- HOST ID -> 

Figure 3.   IP address and Mask example 
 

The addressing architecture separates the address space into five classes 

represented by the letters A, B, C, D, and E.  Class D is reserved for multicast traffic, and 

class E is reserved for future use.  In a class A address, the first eight bits represent the 
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network, and the remaining twenty-four bits represent a host’s address.  The first sixteen 

bits represent the network in a class B addresses, and the first twenty-four bits represent 

the network in a class C address.  Figure 4 presents a pictorial view of the address 

classes.  The ones and zeros on the far left of each address block show the leading bits of 

the IP address, which are a way of distinguishing the address class.  The numbers to the 

right of each class give the range of network addresses, in dotted decimal form, that the 

class covers. 

 

Figure 4.   IP Addressing scheme [CISCO] 
 

Note that if a node sends a datagram to a network’s address, it is considered a 

broadcast, and the network’s border router (the network’s gateway to the internet) will 

forward the datagram to every host on the network.  For instance, consider a class A 

network with the network ID of 10.0.0.0 containing two hosts with the addresses 10.1.1.1 

and 10.2.2.2.  If the border router receives a datagram addressed to 10.0.0.0, it will 

forward the datagram to every existing host inside the network.  In this case both 10.1.1.1 

and 10.2.2.2 will receive the datagram. 
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In addition to the classful hierarchy shown in Figure 4, IP contains a classless 

element that allows routing decisions to be made based on the address mask instead of 

the class of the IP address.  The reason for the introduction of classless IP is that 

traditional subnetting wastes IP addresses [CISCO]; and due to the rapid growth of the 

internet, IP addresses are becoming scarcer.  The two methods used to apply this classless 

structure are Variable Length Subnet Masking (VLSM) and Classless Inter-Domain 

Routing (CIDR).  Both may be used in the classful structure, but they enable more 

efficient use of the IP address space.  Ever since the explosion of the Internet around the 

world in the 1990s, the address space has become an area of growing concern among 

Internet designers and developers.  VLSM and CIDR help to make better use of the entire 

address space, increasing the potential for using every possible IP address.  For in-depth 

discussions of IP addressing, VLSM, and CIDR, see references [3COM] and [CISCO].  

The next section deals with another approach to addressing the concerns with the IP 

address space. 

5. Network Address Translation (NAT) 

The development and deployment of NAT has come with many different benefits, 

and even some drawbacks.  As explained in RFC 2663, “The term ‘Network Address 

Translator’ means different things in different contexts” [NAT_TERM].  The intent of 

this section is not to describe the many varieties, uses, advantages, and disadvantages of 

NAT; but merely to introduce the concept that it implements.   

a. NAT Defined 

Network Address Translation is a mechanism that allows nodes bearing 

private (unregistered) IP addresses to communicate in the global Internet by replacing the 

private addresses with public (globally unique) ones.  The following paragraph illustrates 

the key ideas of NAT. 

In a private network (using private IP addresses) that runs NAT, the 

border routers implement the NAT functionality.  Normally, a border router will not 

forward any datagrams from an intranet into the Internet because they contain a private IP 

address as the source; however, a NAT router will simply swap the private address for a 

predetermined public address that conforms to the standard – either its own global 
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address, or one from a pool of allocated valid addresses.  After forwarding the modified 

datagram, the router maintains the address mapping so that it can map the reply packets 

to the substituted address.  That is the basic function of NAT.   

Figure 5 and the example below it use the MYSEA architecture to 

illustrate how routers perform NAT. 

 

Figure 5.   NAT example 
 

Each IP address in Figure 5 lies next to the interface to which it is bound, and they all 

have a 255.255.255.0 network mask.  In this example, all of the IP addresses reside in the 

private address space.  The actual address values are arbitrary, and are included in this 

example as references.  Recall that the TPE performs the same functions as a border 

router.  When the client sends a datagram to the server, the TPE modifies the source 

address of that datagram before forwarding it.  In the above MYSEA situation, the new 

source address of the client’s datagram that the TPE forwards to the server will be 

192.168.0.1.  In addition to replacing the source address, the TPE creates and maintains a 

mapping between the replacement address and the information that uniquely identifies 

the session (e.g. IP addresses and port numbers).  From then on until the session ends or 

times out, the TPE imposes the address mapping on all traffic that matches a session 

identifier.  When the server responds to the client’s datagram, it responds to 192.168.0.1.  
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Upon reception of that datagram, the TPE finds that it matches the existing session, so it 

replaces the datagram’s destination address with 192.168.1.3 and forwards it to the client. 

b. NAT & MYSEA 

While an ongoing debate rages over the utility and drawbacks of using 

NAT, the mechanism has actually proven very useful for MYSEA.  A useful feature of 

NAT, more accurately referred to as a side effect, is the fact that it allows a border router 

to hide internal IP addresses from the global Internet.  NAT must perform this action in 

order to precisely perform its service of disallowing the propagation of privately sourced 

traffic into the internet; and MYSEA takes advantage of this side effect to create a logical 

union between the TPE and the client.  With NAT, the server only “knows” one IP 

address that logically refers to the client, but is physically assigned to the TPE, allowing 

the TPE to remain in the loop and ensure that MYSEA policies are maintained. 

B. INTERNET PROTOCOL VERSION SIX (IPV6) 

IPv6 represents the next step in the evolution of a robust, flexible communications 

protocol that is intended to accommodate the communications and information sharing 

needs of the world.  This section contains a summary of the IPv6 specification, [IP6].  

The information herein focuses on IPv6 as it applies to MYSEA and with regard to IPv4.  

By no means does this section contain a comprehensive description of the protocol.  For 

more details on IPv6 see [IP6].     

1. General Changes to the IP Design  

Note that the designers of IPv6 do not make any fundamental changes to the basic 

concept and functionality that the Internet Protocol intends to provide.  IPv6 retains the 

same scope as IPv4, but the new design attempts to improve on the original design by 

making it simpler, yet more flexible, and no harder to implement.  The following list, 

presented in [IP6], summarizes the intended changes from IPv4 to IPv6:   

� Expanded addressing capability:  The address size has increased from 32 to 
128 bits.  The new design also contains some changes to addressing schemes 
and address assignment that are beyond the scope of this discussion. 

� Simplified header format: Discussed in the following section. 
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� Better support for extensions and options:  The specification changes the 
encoding of IP header options, thereby increasing efficiency and flexibility, 
and easing the introduction of new options in the future. 

� A flow labeling capability:  A capability for labeling packets that belong to 
particular traffic flows for which a sender requests special handling. 

� Privacy and authentication capabilities:  IPv6 provides explicit extensions to 
support authentication, integrity, and confidentiality. 

This list contains the intended changes from IPv4 to IPv6.  Other significant 

changes in IPv6 include the assumption that every link in the Internet has an MTU of at 

least 1280 bytes.  Also, only the originating node of a packet may perform fragmentation.  

The following sections will elaborate on the intended changes while providing an 

overview of IPv6.   

2. IPv6 Headers 

As previously stated, the format of the IPv6 header is a simplified version of the 

IPv4 header.  Figure 6 illustrates the IPv6 header structure. 

As with the IPv4 header depiction, the numbers above the illustration represent a 

bit count, beginning with the number zero.  The minimum size of an IPv6 header is 40 

bytes, twice the size of the IPv4 header.  The large size of the addresses almost 

necessitates simplifying and making the rest of the header smaller for the sake of 

conserving bandwidth.   
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        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |Version| Traffic Class |           Flow Label                  | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |         Payload Length        |  Next Header  |   Hop Limit   | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                                                               | 
   +                                                               + 
   |                                                               | 
   +                         Source Address                        + 
   |                                                               | 
   +                                                               + 
   |                                                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                                                               | 
   +                                                               + 
   |                                                               | 
   +                      Destination Address                      + 
   |                                                               | 
   +                                                               + 
   |                                                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Figure 6.   IPv6 Header [IP6] 
 

The following list contains a brief description of each field in the header: 

• Version: Current IP version 

• Traffic Class: For use in distinguishing between classes or priorities of packets.  
This field is equivalent to the IPv4 TOS field.   

• Flow Label: This field contains a label assigned to sequences of packets that 
require special handling by routers, such as a QoS specification.   

• Payload Length:  This field specifies the length, in bytes, of the payload, that is 
everything following the IPv6 header. 

• Next Header: Specifies the type of header following the IPv6 header. 

• Hop Limit: Performs the same function as the IPv4 TTL field.  Each forwarding node 
decrements this value by one. 

• Source Address:  The 128-bit address of the originator of the packet. 

• Destination Address:  The address of the intended recipient of the packet. 

IPv6 uses extension headers to encode optional information at the network layer, 

thereby adding to the modularity of the IP design.  These headers lie between the IPv6 

header and the next layer protocol header in an IPv6 packet.  Figure 7 illustrates the use 

of extension headers.   
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IPv6 header Ext header 
(n)

… Data Next layer 
header

Ext header 
(1) 

Figure 7.   IPv6 Extension header example 
 

This capability, in part, replaces the functionality of the variable-sized options 

field in the IPv4 header.  Since all fields in the IPv6 header have a fixed-length, the IPv6 

header has a truly static size.  An IPv6 packet can contain zero or more extension 

headers.  Following is the list of extension headers specified in [IP6]:   

• Hop-by-Hop Options 

• Routing 

• Fragment 

• Destination Options 

• Authentication 

• Encapsulating Security Payload (ESP) 

Nodes that forward packets do not examine any of these headers, with the 

exception of the Hop-by-Hop Options header.  Every node in a packet’s path from source 

to destination always examines this header.  The specification adds more structure to the 

use of the extension headers by setting a specific order in which to include them (see 

[IP6] for that order).  The Routing header provides functionality similar to the Loose 

Source Routing, Strict Source Routing, and Record Route options in IPv4.  The IPv4 

section of this paper contains short descriptions of those routing options.  Source nodes 

include a Fragment header with each fragment of a transmitted packet.  The Destination 

Options header carries optional information that only the ultimate receiver of a packet 

inspects.  Options following this header have a variable length.  The specification 

currently defines two options dealing with padding.  It also provides some initial structure 

– required values of high-order bits for unrecognized options – for option definitions, and 

it contains guidance for introducing new options.  Finally, the Authentication and ESP 

headers provide authentication and encryption respectively.  These two headers relate 

directly to IPsec, and they are discussed in the IPsec section.   
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3. Addressing Architecture 

RFC 2373 [IP6 ADDR] is the primary resource for IPv6 addressing, and the 

majority of IPv6 addressing information resides in that document.  The model for 

addressing in IPv6 closely resembles that of IPv4, except that it natively employs the 

concept of CIDR.  The 128-bit address, the native use of CIDR, and a new IPv6 

addressing model stand out the most. 

a.  Basic Differences from IPv4 Addressing 

As stated above, IPv6 uses a classless addressing structure.  While the 

hierarchy is classless, IPv6 still has various ranges of reserved IP addresses.  The 

specification also defines the following three address types for IPv6:  unicast, anycast, 

and multicast.  A unicast address simply identifies a single interface and functions as a 

normal IP address, the same as IPv4 addresses.  An anycast address identifies a set of 

interfaces (usually on different nodes), and the “nearest” one, according to the routing 

protocol, receives the so addressed packet.  IPv4 has no inherent provision for anycast 

addresses.  A multicast address also identifies multiple interfaces that normally lie on 

different machines.  A packet destined for this type of address is accepted by all 

interfaces that share the address.  The IPv6 multicast address overrides IPv4’s broadcast 

capability, so there are no broadcast addresses in IPv6.  Note that IPv4 does have a 

specified multicast capability which was developed after the initial IP addressing 

specification. 

Finally, the format for representing an IPv6 address in text differs from the 

IPv4 format.  While it is possible to represent an IPv6 address in bitwise or dotted 

decimal notation, it would be much harder for a human reader to interpret since an IPv6 

address is eight times larger than an IPv4 address.  Instead, the standard separates an IPv6 

address into eight pieces, each one represented by a sixteen bit hexadecimal value.  A 

colon separates each value.  A common shorthand method for representing multiple 

sequential zeros is presented in Figure 8.  Alternatively, one may specify the first ninety-

six bits using hexadecimal values and then use the well-known IPv4 bitwise notation to 

represent the final thirty-two bits.  This format is useful for representing IPv6 addresses 

that map directly into IPv4 addresses.  The section on transition tools discusses this type 
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of IPv6 address.  There are other minor intricacies involved with representing these 

addresses, but this is the basic method.  More information is contained in [IP6 ADDR].   

 
fec0:0:0:0:0:0:0:5 

 
is the same as 

 
fec0::5 

Figure 8.   IPv6 Address Examples 
 

b. General Addressing Information 

Similar to IPv4 private addresses, IPv6 defines two types of “local-use” 

[IP6 ADDR] addresses that are designated by the first ten bits in the IPv6 address.  In this 

context, local-use refers to addresses in packets that routers must not forward.  A Link-

Local address serves as an address for a host on a given link in a network, and packets 

containing these addresses must not be forwarded beyond that link.  Site-Local addresses 

may exist beyond a single link, but must not be forwarded beyond the site from which 

they originate.  Additionally, [AGGR] defines an IP address aggregation scheme for IPv6 

global unicast addresses.  The intent of defining this scheme is to streamline Internet 

routing tables and reduce complexity in anticipation of a larger, more complex Internet in 

the future.  Refer to [IP6 ADDR] and [AGGR] for more detailed information on IPv6 

addressing and global address aggregation, respectively.   

4. Security 

As stated in the list of changes in IPv6, the protocol was designed with 

authentication and privacy capabilities.  The Authentication and ESP extension headers 

provide these capabilities through the functions they perform, and these two headers are 

actually a part of the separately defined IP security architecture.  This architecture is laid 

out and discussed in [IPSEC ARCH], and is briefly discussed in Section C.  Based on the 

release dates of the RFCs, the security architecture existed before the IPv6 specification 

was finalized.  Therefore, since IPv6 incorporates IPsec into its design, it is accurate to 

state that IPv6 provides native support for authentication and confidentiality (encryption) 

of data.  Section C introduces the IPsec architecture and describes the functions that the 

Authentication and ESP headers provide. 
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C. INTERNET PROTOCOL SECURITY (IPsec) 

The Internet Protocol security architecture, better known as IPsec, has the 

capability to provide two essential functions to MYSEA.  IPsec’s encryption capabilities 

protect data flowing between the Trusted Path Extension and the server, and its 

authentication capabilities provide two-way authentication between those two nodes.  

Additionally, IPsec is the mechanism chosen to support the Quality of Security Service 

requirements discussed in Chapter I.   

The remainder of this section presents an overview of the IPsec design, 

framework, and its implementation in MYSEA.  IPsec and all of its supporting concepts 

and operations are defined in multiple documents with a lot of intertwining information.  

This section attempts to capture the overall essence of IPsec without delving too deeply 

into the great amount of information defining it.  The information provided here on IPsec 

is drawn from [IPsec, ISAKMP, and IKE].  Refer to [DOCMAP] for a listing of the 

documents pertaining to IPsec and a description of their interrelationships. 

1. Design 

IPsec is intended to provide a common set of security services for nodes on the 

Internet.  These services are listed in the following sub-section.  The major advantage of 

providing security services at the IP layer is that the services are available for IP traffic 

and all higher layer protocols [IPsec].  Since the Internet Protocol is standardized 

throughout the Internet, the IPsec services are universally available. 

a. Goal 

The design goal of IPsec aims to provide “interoperable, high quality, 

cryptographically-based security for IPv4 and IPv6” [IPsec].  IPsec provides the 

following services as described in [IPsec]: 

• Access control 
• Connectionless integrity 
• Authentication 
• Replay protection 
• Data confidentiality 
• Limited traffic flow confidentiality 
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and ESP headers as well as cryptographic key management protocols and procedures.  



Depending on user, application, and system requirements IPsec employs an appropriate 

set of protocols to provide security services requested by a user or application.  While a 

default set of algorithms and protocols is defined to support interoperability in the 

Internet, IPsec is sufficiently flexible for groups of individuals to define and use their 

own sets of algorithms.  Such flexibility is imperative for successful deployment of this 

protocol suite so it can provide all requested services while not interfering with the 

network and its usability.   

b. How IPsec Provides Desired Services 

First of all, note that the IPsec architecture does not cover the 

implementation of specific encryption algorithms and other protocols, but it assumes that 

their implementation is secure.  The best-designed security algorithm or protocol can fail 

if poorly implemented; so, while algorithm implementations are beyond the scope of the 

architecture, it is important to recognize that they play a crucial role in the effectiveness 

of IPsec.   

An IPsec implementation relies on a Security Policy Database (SPD) for 

direction on how to treat IP packets.  Based on the security policy laid out in the SPD, 

packets are either provided with security services, discarded, or allowed to bypass IPsec 

altogether.  On a single host, IPsec allows the system to specify security protocols, and 

then determines the algorithms and cryptographic keys that will facilitate the selected 

services.  Once the services are selected, the cryptographic keys must be created on the 

desired machines.   

IPsec uses symmetric (shared secret) keys and Security Associations (SA).  

A SA is a “simplex ‘connection’ that affords security services to the traffic” [IPsec] that 

it carries.   IPsec relies on a separate mechanism for distributing the cryptographic keys 

and managing the SAs.  The Internet Security Association and Key Management Protocol 

(ISAKMP), specified in [ISAKMP], presents a framework for managing security 

associations and cryptographic keys.  ISAKMP does not define any specific methods for 

managing and distributing keys.  Instead, it sets guidelines that all IPsec key management 

protocols must obey.  With this method, IPsec can rely on any key management 

mechanism that is based on the ISAKMP template.  The Internet Key Exchange (IKE), 
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specified in [IKE], is an example of a public-key based approach for automatically 

distributing cryptographic keys.  The keys may also be distributed manually or through 

some mechanism other than IKE.  The distribution of keys, like encryption algorithms, is 

beyond the scope of [IPsec], so the design essentially assumes that effective key 

management and distribution methods are in use.   

After key distribution, further communications between the involved 

nodes rely on the AH and ESP headers to provide the security services prescribed in the 

SPD.  Both headers may provide connectionless integrity, data origin authentication, and 

an anti-replay service.  The ESP can also provide confidentiality and limited traffic flow 

confidentiality. 

2. QoSS 

One way that QoSS functionality can be provided to the network is through IPsec.  

As discussed in [QoSS], QoSS functionality was added to OpenBSD’s implementation of 

IPsec in IPv4. 

a. Transitioning QoSS Capabilities to IPv6 in MYSEA 

Implementing the QoSS capabilities in IPv6 will potentially involve 

changing the source code that implements it in IPv4.  Since the concept was created and 

developed under IPv4, it is possible that some of the program code depends on 

peculiarities of that protocol.  Such a situation would simply require “porting” those 

sections of code into conformance with IPv6.  Otherwise, given the fact that IPsec is 

designed to function in either an IPv4 or an IPv6 environment, the QoSS additions to an 

IPsec implementation should be a transparent issue when switching protocols.     

D. IPV4 VERSUS IPV6 

Based on the above summaries of the IPv4 and IPv6 protocols, this section 

presents a comparison of the two designs.  While some broad issues are addressed, this 

comparison primarily focuses on the issues that affect MYSEA.  It seeks to pinpoint 

portions of the IPv6 design, if any, that could detract from the basic functionality that 

MYSEA aims to provide. 

28 



1. The Superior Design 

The superiority of either design has yet to be quantitatively proven, and the focus 

of this discussion is not to attempt to discover which one is superior.  IPv4 has been in 

use for over two decades, and since IPv6 is intended to be the next generation Internet 

Protocol, its design should contain beneficial alterations from the IPv4 design.  These 

alterations are listed in the beginning of the discussion on IPv6 as the general changes to 

the IP design.  Conversely, the IPv6 design alterations could potentially bring unwanted 

behaviors during implementation, or they could adversely affect MYSEA.   

2. A Head to Head Comparison 

Beginning with the IP headers, this section notes the changes and possible 

repercussions of those changes from IPv4 to IPv6.  The IPv4 header is much smaller than 

the IPv6 header in terms of bytes; however, this size difference can be quickly narrowed 

when the IPv4 options field contains data.  Since this options field has a variable length, 

the IPv4 header size is also variable, thereby adding to the complexity of header 

processing.  On the other hand, the IPv6 header, while larger, has a static size.  This stasis 

is a benefit to IPv6 because it reduces the possible complexity of the IP header.  It also 

lessens the variability of overall packet size since the header size never changes.  A 

further improvement for IPv6 is the fact that the design allows for more flexibility in 

sending optional information by using extension headers instead of imbedding the data in 

the IP header.  This method makes it easier to define new options in the future while 

contributing to the modularity of the protocol. 

As for addressing, the most obvious improvement in IPv6 is the massive increase 

in the size of the address space.  This increase in IP addresses will mitigate concerns 

about the inability of IPv4 to provide enough addresses for the world.  More subtly, the 

IPv6 addressing hierarchy will improve addressing efficiency throughout the Internet, 

thereby enhancing the efficiency of a distributed system such as MYSEA.  While IPv4 

uses CIDR to aggregate and improve Internet addressing, it is only a partial solution.  

There are many IPv4 addresses that originated before the implementation of CIDR.  

Consequently, the IPv4 addressing hierarchy is a heterogeneous model and is more 

complex than the IPv6 hierarchy. 
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The comparison of security features is, in a sense, unfair to IPv4.  It was not 

initially designed with security capabilities, but it now has the capacity to provide 

authentication and encryption since IPsec introduced the capabilities.  IPv6 was designed 

with the intent to include the ESP and AH headers as extension headers; so IPsec was 

essentially built into IPv6 while it was “patched” into IPv4.  Again, from a security 

standpoint, the idea of embedding functionality has more appeal than functionality 

provided after the fact.  Inclusion in the design from the outset lessens the chance of 

encountering undesirable “feature interactions” in the implementation. 

From a design perspective, the functionality or service that IPsec provides does 

not differ based on which protocol is in use.  However, due to the changes in IPv6, IPsec 

may prove more usable, more reliable, or it may provide more efficient security services 

in IPv6.  Only quantitative analyses of the performance of IPsec in both protocols can 

provide these determinations.  As for QoSS in MYSEA, a change from IPv4 to IPv6 

should be transparent to its implementation. 

3. Conclusion of the Comparison 

It appears that the IPv6 design attempts to increase the overall modularity of the 

IP design.  From the header to the extension headers to the aggregatable addressing 

hierarchy, the specifications for IPv6 appear to focus on modularizing the design while 

minimizing interdependencies of those modules.  In general, modularity is good because 

it increases the flexibility of the design.  Just as IPv6’s modular header design makes it 

easier to define new options, modular components increase the ease of modifying single 

components without affecting the entire design. 

Based on its design and its comparison with the IPv4 design, the conclusion is 

that IPv6 can at the least provide the same unaltered services as IPv4.  Furthermore, IPv6 

could possibly improve the efficiency and security of those services.  Changes involving 

the addressing structure and the default MTU have the potential to provide added 

efficiency across the network; and the simplification of the design coupled with the fact 

that IPsec is part of the design can provide more assurance of security.  IPv6’s 

monumental address space should do away with the necessity for performing NAT in the 

30 



Internet; however, because its address hiding functionality is fundamental to the MYSEA 

design, that functionality must be implemented in an IPv6 version of MYSEA. 

E. THE IPV4-TO-IPV6 TRANSITION 

Over the last few years, a point of division has grown among the engineers and 

architects of the Internet.  On one side of the debate stand those who believe that the 

shrinking address space of IPv4 (along with other concerns such as the size of routing 

tables) is not a significant problem.  Opposing them are those who believe that IPv6 is the 

only option for the Internet’s future communications protocol.  Many among the IPv6 

proponents believe that the immensely larger IPv6 address space will allay the world’s IP 

address space concerns, and that the new protocol will greatly contribute to the advent of 

mobile and pervasive computing. 

The obvious question arising from this debate is “who is right?”  A potential 

answer could be that neither side is exclusively correct.  As stated in [MECHS], “the 

Internet will need [both IPv4 and IPv6] compatibility for a long time … and perhaps 

indefinitely.”  Considering this possibility, it becomes clear that there is a need for 

mechanisms to allow seamless communication between nodes using either protocol.  

Therefore, this section does not seek to argue for one side or the other, but merely 

presents facts about current work intended to prepare the Internet for the use of IPv6.  

These transition mechanisms could also positively impact the use of MYSEA in an IPv6 

environment. 

1. Transition Mechanisms  

The general transition mechanisms listed below are presented by Gilligan and 

Nordmark.  They understand that “the key to a successful IPv6 transition is compatibility 

with the large installed base of IPv4 hosts and routers” [MECHS], so they defined the 

following standard mechanisms to provide such compatibility: 

• Dual IP layer 

• Configured tunneling of IPv6 over IPv4 

• IPv4-compatible IPv6 addresses 

• Automatic tunneling of IPv6 over IPv4 

31 



A machine with a dual IP layer, also referred to as a dual IP stack, has support for 

both Internet Protocols.  Nearly every current PC computer system and router contains a 

dual IP stack, enabling it to communicate through either IPv4 or IPv6.  Configured 

tunneling involves transmitting IPv6 data across an IPv4 link by encapsulating the IPv6 

packets within IPv4 datagrams.  A configured tunnel is a point-to-point connection, i.e., 

explicitly set up on a single link between two nodes.  In automatic tunneling, a node uses 

an IPv4-compatible IPv6 address to automatically tunnel IPv6 packets over IPv4 

networks.  An IPv4-compatible address is an IPv6 address with an embedded IPv4 

address.  Addresses belonging to this group contain all zeros for their first ninety-six bits, 

and the following thirty-two bits represent the embedded IPv4 address.  Figure 9 shows 

an example IPv4-compatible IPv6 address with sizes of the two major parts annotated. 

 
|              96-bits                 |   32-bits    |
+--------------------------------------+--------------+
|            0:0:0:0:0:0               |   1.2.3.4    |
+--------------------------------------+--------------+

Figure 9.   IPv4-compatible IPv6 Address [MECHS] 
 

In addition to the mechanisms specified in [MECHS], the following transition 

mechanisms are defined in other documents: 

 

• A mechanism for allowing communications between remote IPv6 domains that are 
separated by an IPv4 network, e.g., the Internet.  This mechanism is known as 6to4, 
and is specified in [6to4]. 

• Network Address Translation - Protocol Translation (NAT-PT), a NAT mechanism 
that translates between IPv4 and IPv6, is specified in [NATPT].   

• A mechanism for a dual IP layer machine that allows forwarding of transport-layer 
data between IPv6 and IPv4 networks.  This mechanism is called a Transport Relay 
Translator (TRT) and is specified in [TRT]. 

 

The TRT is the higher-level cousin of NAT-PT.  NAT and NAT-PT devices 

manipulate IP packets and IP addresses, modifying the addressing information before 

forwarding a packet on to its destination.  A TRT functions one level above NAT-PT, 

forwarding TCP/UDP connections for specific services to a specified destination.  The 
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TRT is based on transport relay (which can also be referred to as proxy) functionality.  

The 6to4 mechanism appears to currently be the most widely used transition mechanism.  

It is employed by host machines for users who wish to connect to the experimental IPv6 

Internet backbone called the 6Bone. 

The above tools are important for those users who wish to experiment with IPv6 

while interacting with native IPv4 nodes.  They also give experimenters the ability to 

access the IPv6 Internet backbone, called the 6bone, which is basically a group of 

interconnected IPv6 compliant machines.  Users can tunnel their IPv6 traffic through 

their IPv4 Internet Service Providers (ISP), and the 6bone border routers will strip off the 

IPv4 headers and forward the IPv6 traffic to its destination. 

2. Transition Mechanisms & MYSEA 

Transition mechanisms are relevant to MYSEA because they can assist with the 

development of IPv6 solutions for the architecture.  Theoretically, MYSEA can be 

distributed in such a way that a client workstation lies on a network separated from the 

server by one or more interconnected networks (i.e. the Internet).  Assuming that 

MYSEA employs IPv6 and the networks between the server and client use IPv4, MYSEA 

would have to make use of the transition mechanisms in order function in the mixed 

environment.   
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IV. IMPLEMENTATION OF IPV6 MYSEA PROTOTYPE 
 

This chapter contains a detailed description of the work involved in creating an 

IPv6 version of the MYSEA prototype.  The general steps involved in this 

implementation were:   

 
1. Set up the IPv4 MYSEA prototype test bed on three PCs. 
2. Design an IPv6 solution with the functionality that MYSEA requires. 
3. Upgrade protocol dependent software. 
4. Enable IPv6 stacks on the appropriate MYSEA machines. 
5. Create an IPv6 mechanism to perform the functionality of NAT. 
 

The IPv4 implementation of the architecture served as a baseline for the work described 

here.  After verification that it functioned properly in IPv4, the IPv6 implementation 

process could begin.  The ensuing subsections will detail the design and implementation 

process beginning with the IPv4 prototype.  Note that QoSS is not part of this 

implementation work. 

A. IPV4 PROTOTYPE 

1. Design 

The current MYSEA prototype in IPv4 consists of two laptop PCs and a Compaq 

Pocket PC running the Linux OS.  OpenBSD version 3.1 serves as both the server and 

client OSs; however, the server OS is modified to handle data labeling.  All of the basic 

design issues are covered in the Chapter II discussion of MYSEA. 

The subsections below discuss the differences between the “laptop” MYSEA 

prototype design and the “PC” prototype design. 

a. Design Choices for the IPv4 Server 

The server system remained unchanged from the previous prototype.   

b. Design Choices for the IPv4 TPE 

The TPE was implemented on the FreeBSD version 4.7 OS instead of the 

Linux OS used in the previous IPv4 prototype.  FreeBSD was chosen as the TPE’s OS for 

the following reasons:  It has a very mature IPv6 networking stack, and it is generally a 
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very flexible OS.  FreeBSD’s flexibility could have provided many options during 

implementation of the TPE if necessary.   

c. Design Choices for the IPv4 Client 

As a testament to the flexibility of the MYSEA design, the client 

workstation runs the Windows XP OS while the current IPv4 prototype client runs 

OpenBSD.  This difference in OSs had no effect on the function of MYSEA because the 

design allows for various client machines. 

Other than the above minor changes and the use of different IP addresses, 

the “PC” prototype design was exactly the same as the “laptop” design.  Figure 5 in 

Chapter II contains a diagram of the network setup, and it is reproduced here as Figure 10 

for convenience.   

 

Figure 10.   IPv4 MYSEA network diagram 
 
 
2. Implementation 

a. Setup of the IPv4 Server 

The first step of the implementation of the IPv4 MYSEA prototype 

involved installation of the server’s OS and completing the modifications to allow data 

labeling.  Setting up the server also included modifying a file called “tcbe_list” to ensure 

36 



that it contained the TPE’s IP address.  Currently, the server uses this file to confirm the 

identities of the TPEs that have permission to communicate with it.   

b. Setup of the IPv4 Trusted Path Extension (TPE) 

 Next, FreeBSD was installed as the OS for the TPE, and the Trusted Path 

Extension user interface software was loaded onto the machine.  This software serves as 

the user’s interface for authenticating himself to the server through the TPE.   

c. Setup of the IPv4 Client 

Windows XP was installed on the client machine, and it was connected to 

the TPE.  No further actions were taken to prepare the client machine.   

d. Verification of IPv4 MYSEA Functionality on Three PCs 

Once communications capabilities were verified between the TPE and the 

other two machines, packet forwarding on the TPE was enabled and a packet capturing 

tool was used to verify that the client and server could communicate across the TPE.   

 With all communications verified, the final step was to enable NAT on the 

TPE.  This step involved modifying the FreeBSD kernel to enable loading of firewall 

software upon startup, and then configuring the firewall to use its NAT functionality.  

The firewall called ipf and its NAT software, called ipnat, were used to provide the 

required functionality.  Once NAT was enabled and functioning correctly, the IPv4 

MYSEA network was complete and fully functional. 

 The all-PC prototype of MYSEA in IPv4 functioned exactly as the laptop 

prototype did.  A demonstration of its functionality consisted of the following steps: 

 
1. Execute the TPE user interface program. 
2. Click the Secure Attention Request (SAR) key to initiate communications 

with the server. 
3. Enter the login name of an authorized user of the system. 
4. Enter the user’s password. 
5. Select the unclassified session level. 
6. Enter the “Run” command. 
7. On the client machine, open a Web browser. 
8. Type the IP address of the server into the address bar. 
9. When the web page opens, click the link to access unclassified information. 
10. Click the “Back” button on the browser. 
11. Click the link to the classified information -- no useful information appears. 
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12. Click “Back” on the browser again. 
13. Return to the TPE, click the SAR key, and select the classified session level. 
14. Enter the “Run” command. 
15. Return to the client machine and click the link to access classified 

information. 
16. View classified information. 
17. Click the “Back” button. 
18. Click the link to the unclassified information and view it to verify read-down 

capability 
 

 Running the demonstration provided confirmation of a functioning IPv4 

MYSEA prototype on three PCs that required no major modifications.  Given this 

working implementation, one could then assume that any modifications to the design or 

implementation of the architecture in IPv6 were attributable to the use of the new 

protocol. 

B. IPV6 PROTOTYPE 

1. Design 

The basic design of the all-PC IPv6 MYSEA prototype is no different from the 

IPv4 version of the architecture.  The OSs of the machines remained the same as they are 

in the all-PC IPv4 prototype.  The server’s OS has remained static throughout this 

project; the client’s OS can be any available PC operating system; and the TPE OS was 

chosen for this project before the design and implementation of the all-PC IPv4 MYSEA 

prototype, so it too remains unchanged.   

The TPE’s OS, FreeBSD 4.7, contained an IPv6 stack that appeared to be one of 

the most mature and robust IPv6 stacks in development.  Also, as stated above, the 

flexibility of FreeBSD was likely to aid in this work.  Naturally, each interface in the 

IPv6 network has a different IP address than the interfaces in the IPv4 network setup.  

Additionally, bear in mind that the link from the client to the TPE could be an IPv4 link 

without affecting the function of the architecture.  In fact, it does not matter how the 

client and TPE communicate as long as the TPE has a mechanism for translating 

communications to the server network.  Since IP is the standard network protocol, 

available in all COTS client systems, it is a reasonable choice for this link.  Figure 11 

shows the design of the IPv6 MYSEA prototype.   
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Figure 11.   IPv6 MYSEA network diagram 
 
 
2. Implementation 

The information below provides the details of the steps taken to implement the 

MYSEA architecture on an IPv6 network.  Aside from having to update the applications 

that were not compatible with IPv6, the implementation was very similar to that for IPv4 

up to the following point: The provision of the NAT functionality on the TPE required 

the greatest amount of effort because IPv6 lacks native NAT functionality.  The 

following list provides a basic overview of the steps taken to complete the 

implementation: 

• Ensure installation of IPv6 networking stacks on all machines. 

• Verify communications abilities between the TPE and server, and between 
the TPE and client. 

• Enable IPv6 packet forwarding on the TPE and verify communications 
abilities across the TPE. 

• Ensure IPv6-compatible application software is installed where necessary. 

• Update MYSEA-specific software on the server and TPE. 

• Decide on a mechanism to provide the necessary NAT functionality on the 
TPE. 

• Install or implement this mechanism. 

• Run the MYSEA demonstration and verify correct function of the 
architecture. 
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a. Enable Network Communications 

 The client, running Windows XP, was the only machine in the IPv6 design 

that did not have its IPv6 stack enabled by default.  Simply typing “ipv6 install” at the 

command prompt enabled IPv6 functionality on the client machine.  Once IPv6 

capabilities were verified in all PCs, the ping6 utility was used to verify that the machines 

could communicate in IPv6.  Then forwarding of IPv6 packets was enabled on the TPE, 

and it was verified that the server and client could communicate across the TPE.  That 

step completed the enabling of communications in the network.  The next large step in 

the process entailed ensuring that all applications and programs could function in an IPv6 

environment. 

b. Port Applications to IPv6 

Many of the applications used in the original prototype depended on IPv4 

as the communications protocol, and minor changes had to be made to the MYSEA-

specific programs on the server.  These programs included a modified version of inetd, 

which handled incoming connection requests, and the trusted path services program that 

handled authentication from the TPE.  The TPE user interface program also had to be 

modified to use IPv6 for the authentication process.  Additionally, the server’s Web 

server application had to be replaced with one that functioned in an IPv6-enabled 

environment; however, it turned out that the client’s Web browser functioned with IPv6 

by default.  With sound communications and IPv6-ready applications, the final step in 

this implementation was to provide the NAT functionality that would in effect hide the 

true IP address of the client from the server. 

c. Considerations before Implementing NAT Functionality in IPv6 

Before attempting creation of a NAT mechanism on the TPE from scratch, 

other options were explored.  As mentioned in Chapter III, section E, there is a 

specification for a mechanism called NAT-PT.  This mechanism would give a legacy 

IPv4 client machine the ability to access an IPv6 MYSEA network.  Unfortunately, there 

were apparently no reliable implementations of NAT-PT available to be incorporated into 

MYSEA.  After reaching this stage, there was no point in considering the use of a hybrid 

network design.  It made more sense to implement NAT in IPv6 than to implement the 
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more complex NAT-PT.  The decision was made to implement the client-to-TPE link in 

IPv6, resulting in the diagram in Figure 11.   

The possibility of taking advantage of the flexibility in IPv6’s addressing 

architecture was also explored.  Recall that every machine must have a Link-local IP 

address.  Even though these addresses were not used, and therefore not shown in the 

network diagram, each machine did indeed have a Link-local address through which it 

could communicate.  After much review and consideration of hypothetical designs, there 

appeared to be no effective way to use the addressing architecture, or other unique 

concepts such as load-sharing, to provide the needed functionality without still placing a 

subset of NAT functionality on the TPE.   

Coming to this conclusion meant that a new mechanism must be created 

that will allow the TPE to provide the same functions that NAT provided to MYSEA in 

IPv4.  However, rather than creating an IPv6 NAT mechanism from scratch, it made 

more sense to find and use some existing open-source software as a sort of template.  The 

existing IPv4 NAT implementations proved far too large and complex to create a port for 

IPv6, especially since MYSEA only requires the address replacement functionality and 

current NAT implementations provide much more.  For instance, NAT mechanisms are 

expected to be able to perform port address translation (PAT), and they have the 

functionality to create mappings for ranges of IP addresses.  PAT involves mapping a 

port on the NAT device to the IP address of an internal node.  See [NAT_TERM] and 

[NAT] for more intricacies of NAT and PAT.  That extra functionality complicates any 

attempt to port a subset of NAT to IPv6.  The few thousand lines of source code that are 

separated into multiple files are very interdependent, and the program flow is extremely 

complex.  Furthermore, NAT code runs in kernel space and uses kernel-specific 

operations; therefore, a port of NAT to IPv6 would be OS dependent and most likely only 

function on the FreeBSD kernel in this case.  Then, in the future, developers would have 

to either completely rebuild or rewrite parts of the code for it to be compatible with the 

final TPE kernel.  The situation was as follows: NAT-PT implementations were 

unavailable, the use of IPv4-mapped addresses would still require extra functionality on 

the TPE, and there appeared to be no implemented TRTs that could be used.   
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However, there was a user-level program called faithd (faith dee) available 

for the FreeBSD OS that somewhat performed the functionality needed to complete the 

IPv6 MYSEA implementation.  Though it is not stated in any of the program 

documentation, faithd is actually a TRT that uses IPv4-mapped IPv6 addresses to give an 

IPv6 node the ability to access an IPv4 network.  This functionality is the opposite of 

what the TPE would need to perform if the client-to-TPE link was an IPv4 link.  Still, the 

code for faithd was enough to serve as a partial template for a pure IPv6 transport-layer 

connection forwarder.  More importantly, faithd was packaged with the code that 

performs relaying of TCP and UDP connections, so the program only required 

modifications to its calling interface.  Even though the final version of this forwarder 

would not perform true NAT because it operates on the transport layer instead of the IP 

layer (making it more like a proxy), it does provide the functionality necessary for 

MYSEA to function in an IPv6 environment. 

d. Implementation of IPv6 NAT Functionality 

Since faithd was designed to provide service to IPv6 nodes, it contained 

the information necessary for handling IPv6 connections.  Instead of forwarding an IPv6 

connection to an IPv4 connection, the modified faithd (called myseatr) would forward 

data from a specific IPv6 connection (the client) to another specific IPv6 connection (the 

server).     

The first step in changing the functionality of faithd was to review the 

code to gain an understanding of how it worked.  The code contained roughly one 

thousand lines, so this goal was not unattainable.  After virtually mapping the source 

code, the socket calls and connection operations had to be adjusted to use only pure IPv6 

interfaces and addresses.  All code involving IPv4 was removed from the program.  The 

program’s ability to run from inetd was also removed for simplicity.  Appendix A 

contains the source code of the program.     

myseatr functions as follows:  at the start of program execution, myseatr 

prompts the user for the interface names on the client and server networks, and for the 

client and server IPv6 addresses.  It uses the interface names to ensure that it only 

forwards connections from the client interface.  Also, the client’s IP address is the only 
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address from which the program will forward data, and the server’s IP address is always 

the destination.  When the client machine makes a TCP connection to the machine on 

which myseatr is running, it accepts that connection, makes an identical TCP connection 

to the server, and forwards ensuing data between the client and server connections.  Upon 

completion of the program modifications, the demonstration was run and the 

functionality of MYSEA in IPv6 was verified.  However, since myseatr requires a direct 

TCP connection from the client, the demonstration had to be modified accordingly.  

Instead of typing the server’s IP address into the browser’s address bar, the user must 

type in the IP address of the TPE.  The following section explores the implications of 

using myseatr to provide the required functionality. 

3. Implications of Performing Proxy Translation Vice True NAT 

Implementing MYSEA’s NAT functionality through what is essentially an IPv6 

proxy gets the job done, but it could have a major impact on the rest of the architecture.  

This section explores the effects that a proxy translator could have on the MYSEA 

network.   

First of all, the proxy method is misleading because the user of the client machine 

would have to connect to the TPE for all services, and the TPE would forward those 

connections to the appropriate MYSEA servers.  Even though this situation has an impact 

on the use of MYSEA, it should not have any adverse effects on the function of MYSEA.   

With regard to the connection, a proxy breaks the end-to-end connection from the 

client to the server.  However, since the client and TPE are considered by the server to be 

one entity, the connection only needs to be end-to-end between the TPE and server.  Note 

also that true NAT disrupts end-to-end communications.    

Another drawback to transport layer connection forwarding is the fact that the 

forwarder only recognizes connections to specific services such as web, telnet, and file 

transfer protocol (FTP).  This means that an instance of the myseatr program can forward 

one of these services and only one of them.  A simple rectification to this problem would 

be to either run myseatr from the Internet daemon (inetd) – i.e., restore myseatr’s ability 

to run from inetd – or add inetd-like functionality to myseatr.   
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The fact that this TPE implementation is a proxy means that it is more constrained 

in the potential operations it can perform, and it is much less flexible than NAT.  As 

stated in the above paragraph, the service it supports must be explicitly stated, but a true 

NAT device deals with packets and pays no attention to higher layer protocols.  NAT also 

provides more granularity and flexibility in its abilities to manipulate communications.  

Of course, this flexibility comes with the price of requiring more expertise and energy to 

implement NAT in a UNIX environment.  This fact might have been an advantage to the 

proxy method if the TPE had already been developed in a UNIX environment.  However, 

the objective is to run the TPE in a high assurance, non-UNIX environment; therefore, 

until such an environment becomes available, one can draw no conclusions about the 

relative time and energy required to build the TPE with the necessary NAT functionality 

versus the time and energy needed for the proxy functionality. 
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V. CONCLUSIONS AND FUTURE WORK 
 

The paragraphs below briefly restate the conclusions from the comparison of the 

IPv4 and IPv6 designs.  Following that discussion is a section containing future work 

beyond this research. 

A. THE FACTS ABOUT MYSEA AND IP 

MYSEA depends on the Internet Protocol for communications throughout the 

distributed network.  Currently, IPv4 is the standard in use, but since IPv6 is a viable 

replacement, its use and how it will integrate into MYSEA should be explored.  As 

evidenced by the existing MYSEA prototype, IPv4 has the capabilities to provide the 

necessary services that MYSEA requires; and even though IPsec was patched into the 

protocol, it can effectively provide the necessary security services.  IPv6, with its design 

improvements, may provide improved IP and IPsec services to MYSEA. 

1. Concerns with IPv4 

First, IPv4 has been in use for greater than twenty years.  While supporting the 

fact that IPv4 was well designed and has proven more useful than originally intended, 

this fact also serves as a reminder, along with the other concerns mentioned in this paper, 

that the Internet needs an upgrade.  The IPv4 address space, while large in its own right, 

does not have the capacity to handle the IP addressing needs of the world either today or 

in the future.  IPv4 addressing and Internet routing tables are other sources of concern 

about the protocol.  Finally, IPsec was a functionality add-on to provide security for IPv4.  

This fact serves to lessen the assurance that IPv4 can provide concrete authentication and 

encryption for IP datagrams. 

2. The Potential within IPv6 

a. Design 

The IPv6 design does contain improvements over the IPv4 design, and 

some of these improvements are discussed here. 

IPv6 has a more structured overall design, and the IPv6 header has been 

streamlined.  Its simplification has resulted in a static header size, another improvement.  
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Also as a result of the simplification of the header, IPv6 allows for extension headers that 

are used to encode optional data.  This method of delivering optional data adds flexibility 

to the protocol by allowing for new options and headers to be easily defined and 

implemented in the future.  The IPv6 design adds structure to the use of these headers by 

recommending an order for including these headers in a packet. 

b. Addressing 

Perhaps the most obvious improvement in IPv6 is the increase in the size 

of the address space and the way the addressing hierarchy is set up.  The addressing 

hierarchy is intended to allow better aggregation of IP addresses and to take full 

advantage of the benefits that CIDR provides to IPv4.   

c. Security 

On the subject of security, IPv6 was built with native support for IPsec.  

Unlike IPv4, where IPsec was not built into the design, IPv6 incorporates the IPsec 

headers as extension headers.  This innate integration of IPsec can provide more assured 

security services for MYSEA.  Moreover, it supports the security practice of maintaining 

simplicity in order to provide greater assurance that security is maintained.   

d. QoSS 

The proof of concept implementation of QoSS involved the modification 

of part of an IPsec implementation.  Given that IPsec is the chosen avenue for the 

ultimate provision of QoSS capabilities in MYSEA, then the transition to IPv6 will have 

no visible effect on those services.   

3. The Impending Transition and MYSEA 

Already in the earliest stages, the world will begin a gradual transition from IPv4 

to IPv6.  The tools that have been defined and developed to aid in this transition, as well 

as tools that have yet to be developed, have the potential to aid in the deployment of the 

distributed MYSEA architecture.  These tools could also aid in MYSEA’s own transition 

to IPv6 by allowing a legacy IPv4 client to access an IPv6 MYSEA network or vice 

versa. 
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B.  FUTURE WORK 

The following sections introduce items of future work beyond that performed in 

this thesis. 

1. Solve the NAT Problem 

One area of possible work for MYSEA in IPv6 is the task of finding a native IPv6 

alternative to implementing NAT.  Such work could include exploring for and possibly 

finding an IPv6 workaround for NAT.  If the conclusion of this work is that MYSEA in 

IPv6 must depend on NAT, then another possible future project is to develop the specific 

NAT functionality in IPv6 on which MYSEA depends. 

Another project involving NAT would include a comparison of performing true 

NAT versus transport relay in MYSEA.  Each method comes with different pros and 

cons, and MYSEA will likely benefit from one method more than the other. 

Finally, for NAT in MYSEA, the following situation can be explored: since every 

IPv6 conformant client boots up with a unique link-local address, the step for assigning it 

a site-local address can be skipped altogether.  The link-local address will allow the client 

to communicate with the TPE, but packets containing that address can never exist beyond 

that link.  However, the TPE can run NAT such that it replaces the client’s link-local 

address with its own (valid beyond the client-TPE link), and then forward the resulting 

packets.  Such an implementation will restrict the client’s communications ability, 

thereby requiring nothing beyond a conformant IPv6 implementation on the TPE, and it 

totally supports the MYSEA design. 

2. Research on a Hybrid IPv4 and IPv6 Network 

One can explore the viability of running MYSEA as a hybrid IPv4 and IPv6 

network.  The possible gains and losses of such a MYSEA implementation can be 

addressed during that exploration.  Such work can also include a hybrid prototype 

implementation of MYSEA that runs NAT-PT on the TPE. 

3. Technical Work 
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A future project that is more technical than those presented above involves a 

quantitative analysis of network performance for networks using IPv4 versus Pv6.  Such 

an analysis can be performed on a MYSEA implementation, and can serve as concrete 



evidence of which protocol benefits MYSEA more.  In addition, an analysis can be 

performed on the performance of IPsec in either protocol.  This analysis will address such 

items as overall usability, ease of configuration, and general performance of service (e.g. 

change in transfer rate due to use of the ESP header). 

4. Work on QoSS 

Implementation and analysis of the provision of QoSS in IPv6 is another future 

project involving MYSEA and IPv6.  Research can be performed on the best way to 

provide QoSS in an IPv6 environment, and further work can be done on its effectiveness 

in such an environment. 
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APPENDIX 
 
 

/* MRO: This code is based on the version of faithd given below */ 
 
/* $KAME: faithd.c,v 1.46 2002/01/24 16:40:42 sumikawa Exp $ */ 
 
/* 
 * Copyright (C) 1997 and 1998 WIDE Project. 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in  
 * the documentation and/or other materials provided with the 
 * distribution. 
 * 3. Neither the name of the project nor the names of its contributors 
 *    may be used to endorse or promote products derived from this 
 * software 
 *    without specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS''  
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
 * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR 
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND 
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
 * SUCH DAMAGE. 
 * 
 */ 
 
/* 
 * MRO: This program is a user level tcp connection forwarder for IPv6. 
 * 
 * Usage: myseatr [<port> <progpath> <arg1(progname)> <arg2> ...] 
 *  e.g. myseatr -d http 
*/ 
 
#include <sys/param.h> 
#include <sys/types.h> 
#include <sys/sysctl.h> 
#include <sys/socket.h> 
#include <sys/wait.h> 
#include <sys/stat.h> 
#include <sys/time.h> 
#include <sys/ioctl.h> 
#include <libutil.h> 
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#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 
#include <string.h> 
#include <syslog.h> 
#include <unistd.h> 
#include <errno.h> 
#include <signal.h> 
#include <fcntl.h> 
#include <termios.h> 
 
#include <net/if_types.h> 
#include <net/if.h> 
#include <net/route.h> 
#include <net/if_dl.h> 
 
#include <netinet/in.h> /* MRO: includes netinet6/in6.h */ 
#include <arpa/inet.h> 
#include <netdb.h> 
#include <ifaddrs.h> 
 
#include "faithd.h" 
#include "prefix.h" 
 
char *serverpath = NULL; 
char *serverarg[MAXARGV + 1]; 
static char *myseatrname = NULL; 
char logname[BUFSIZ]; 
char procname[BUFSIZ]; 
 
struct myaddrs { 
 struct myaddrs *next; 
 struct sockaddr *addr; 
}; 
 
struct myaddrs *myaddrs = NULL; 
static const char *service; 
static int sockfd = 0; 
int dflag = 0; 
static int pflag = 0; 
static int inetd = 0; 
static char *configfile = NULL; 
 
/********************************************************************** 
* MRO: following are my global variables. 
**********************************************************************/ 
/* mySockAddr stores addresses useful. */ 
struct mySockAddr { 
 /* my socket address on server side */ 
 struct sockaddr_in6 tpe_s;  
 
 /* client's socket address when connected */ 
 struct sockaddr_in6 clientAddr; 
 
 /* Socket to listen on */ 

52 
 struct sockaddr_in6 tpe_c; }; 



 
struct mySockAddr *mySock; 
 
char ifServ[5]; 
char ifClient[5]; 
char serverAddr[NI_MAXHOST]; 
char clientAddr[NI_MAXHOST]; 
 
/********************************************************************** 
* MRO: Function prototypes, modified 
**********************************************************************/ 
 
int main __P((int, char **)); 
 
static int daemon_main __P((int, char **)); 
 
static void play_service __P((int)); 
 
static void play_child __P((int, struct sockaddr *)); 
 
static int fwd_choice __P((struct sockaddr_in6 *)); 
 
static int subSrcAddr __P((struct sockaddr_in6 *)); 
 
static void grab_myaddrs __P((void)); 
 
/********************************************************************** 
* MRO: Function prototypes, unmodified 
**********************************************************************/ 
 
static void sig_child __P((int)); 
 
static void sig_terminate __P((int)); 
 
static void start_daemon __P((void)); 
 
static void exit_stderr __P((const char *, ...)) 
 __attribute__((__format__(__printf__, 1, 2))); 
 
static void update_myaddrs __P((void)); 
 
static void usage __P((void)); 
 
/********************************************************************** 
* MRO 
* Function:  main 
* Description: The main function.  Currently, it always calls 
*   daemon_main, but it can possibly call an inetd_main 
*   if called from inetd. 
**********************************************************************/ 
int 
main(int argc, char **argv) 
{ 
  
 /* MRO: Get network specific information from user */ 
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 scanf("%s",ifServ); 
 
 printf("Type the TPE's client-side interface name: "); 
 scanf("%s",ifClient); 
 
 printf("\nInput the server's IPv6 address: "); 
 scanf("%s", serverAddr); 
 
 printf("Input the client's IPv6 address: "); 
 scanf("%s", clientAddr); 
 
 /* 
  * Initializing stuff 
  */ 
 
 /* MRO: have to malloc for space */ 
 mySock = (struct mySockAddr *)malloc(sizeof(struct mySockAddr)); 
 if (!mySock) { 
  exit_failure("not enough core"); 
  //NOTREACHED 
 } 
 
 myseatrname = strrchr(argv[0], '/'); 
 if (myseatrname) 
  myseatrname++; 
 else 
  myseatrname = argv[0]; 
 
 return daemon_main(argc, argv); 
} 
 
/********************************************************************** 
* MRO 
* Function:  daemon_main 
* Description: This function is called by the main function when 
*   the program is run as a daemon.  It performs the same 
*   initial operations that the program would as a daemon. 
**********************************************************************/ 
static int 
daemon_main(int argc, char **argv) 
{ 
 struct addrinfo hints, *res, *myres; 
 struct sockaddr_in6 *tempSin6; 
 int s_wld, error, i, serverargc, on = 1; 
 int family = AF_INET6; 
 int c; 
 
 while ((c = getopt(argc, argv, "df:p46")) != -1) { 
  switch (c) { 
  case 'd': 
   dflag++; 
   break; 
  case 'f': 
   configfile = optarg; 
   break; 
  case 'p': 
   pflag++; 
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   break; 
#ifdef FAITH4 
  case '4': 
   family = AF_INET; 
   break; 
  case '6': 
   family = AF_INET6; 
   break; 
#endif 
  default: 
   usage(); 
   /*NOTREACHED*/ 
  } 
 } 
 argc -= optind; 
 argv += optind; 
 
 grab_myaddrs(); 
 
 switch (argc) { 
 case 0: 
  usage(); 
  /*NOTREACHED*/ 
 default: 
  serverargc = argc - NUMARG; 
  if (serverargc >= MAXARGV) 
   exit_stderr("too many arguments"); 
 
  serverpath = malloc(strlen(argv[NUMPRG]) + 1); 
  strcpy(serverpath, argv[NUMPRG]); 
  for (i = 0; i < serverargc; i++) { 
   serverarg[i] = malloc(strlen(argv[i + NUMARG]) + 1); 
   strcpy(serverarg[i], argv[i + NUMARG]); 
  } 
  serverarg[i] = NULL; 
  /* fall through */ 
 case 1: /* no local service */ 
  service = argv[NUMPRT]; 
  break; 
 } 
 
 /* 
  * Opening socket for this service. 
  */ 
 
 memset(&hints, 0, sizeof(hints)); 
 hints.ai_flags = AI_PASSIVE; 
 hints.ai_family = family; 
 hints.ai_socktype = SOCK_STREAM; 
 hints.ai_protocol = 0; 
 
 error = getaddrinfo(NULL, service, &hints, &res); 
 if (error) 
  exit_failure("getaddrinfo: %s", gai_strerror(error)); 
 
 s_wld = socket(res->ai_family, res->ai_socktype, 
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 if (s_wld == -1) 
  exit_failure("socket(s_wld): %s", strerror(errno)); 
 
 error = setsockopt(s_wld, SOL_SOCKET, SO_REUSEADDR, &on, 

sizeof(on)); 
 if (error == -1) 
  exit_failure("setsockopt(SO_REUSEADDR): %s", 

strerror(errno)); 
  
 error = setsockopt(s_wld, SOL_SOCKET, SO_OOBINLINE, &on, 

sizeof(on)); 
 if (error == -1) 
  exit_failure("setsockopt(SO_OOBINLINE): %s", 

strerror(errno)); 
 
 error = bind(s_wld, (struct sockaddr *)res->ai_addr, 

res->ai_addrlen); 
 if (error == -1) { 
  switch (errno) { 
   case EAGAIN: 
    syslog(LOG_WARNING, "error: EAGAIN"); 
    break; 
   case EBADF: 
    syslog(LOG_WARNING, "error: EBADF"); 
    break; 
   case ENOTSOCK: 
    syslog(LOG_WARNING, "error: ENOTSOCK"); 
    break; 
   case EADDRNOTAVAIL: 
    syslog(LOG_WARNING, "error: EADDRNOTAVAIL"); 
    break; 
   case EADDRINUSE: 
    syslog(LOG_WARNING, "error: EADDRINUSE"); 
    break; 
   case EACCES: 
    syslog(LOG_WARNING, "error: EACCES"); 
    break; 
   case EFAULT: 
    syslog(LOG_WARNING, "error: EFAULT"); 
    break; 
   default: 
    break; 
  } //switch 
  exit_failure("bind: %s", strerror(errno)); 
 } 
 
 error = listen(s_wld, 5); 
 if (error == -1) 
  exit_failure("listen: %s", strerror(errno)); 
 
 sockfd = socket(PF_ROUTE, SOCK_RAW, PF_UNSPEC); 
 if (sockfd < 0) { 
  exit_failure("socket(PF_ROUTE): %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } 
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 /* 
  * Everything is OK. 
  */ 
 
 start_daemon(); 
 
 snprintf(logname, sizeof(logname), "myseatr %s", service); 
 snprintf(procname, sizeof(procname), "accepting port %s", 

service); 
 openlog(logname, LOG_PID | LOG_NOWAIT, LOG_DAEMON); 
 syslog(LOG_INFO, "Starting myfaith daemon for %s port", service); 
 
 freeaddrinfo(res); 
 play_service(s_wld); 
 
 /* NOTREACHED */ 
 exit(1); /*pacify gcc*/ 
 
} //end daemon_main 
 
/********************************************************************** 
* MRO 
* Function:  play_service 
* Description: Waits for and accepts connections, and then forks to 
*   allow child process to handle the connections.  The 
*   forked process calls play_child after forking. 
**********************************************************************/ 
static void 
play_service(int s_wld) 
{ 
 struct sockaddr_in6 srcaddr; 
 int len; 
 int s_src; 
 pid_t child_pid; 
 fd_set rfds; 
 int error; 
 int maxfd; 
 
 /* 
  * Wait, accept, fork, faith.... 
  */ 
again: 
 setproctitle("%s", procname); 
 
 FD_ZERO(&rfds); 
 FD_SET(s_wld, &rfds); 
 maxfd = s_wld; 
 
 if (sockfd) { 
  FD_SET(sockfd, &rfds); 
  maxfd = (maxfd < sockfd) ? sockfd : maxfd; 
 } 
 
 error = select(maxfd + 1, &rfds, NULL, NULL, NULL); 
 if (error < 0) { 
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  if (errno == EINTR) 
   goto again; 
  exit_failure("select: %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } 
 
 if (FD_ISSET(sockfd, &rfds)) { 
  update_myaddrs(); 
 } 
 
 if (FD_ISSET(s_wld, &rfds)) { 
  len = sizeof(srcaddr); 
  s_src = accept(s_wld, (struct sockaddr *)&srcaddr, 
   &len); 
  if (s_src < 0) { 
   if (errno == ECONNABORTED) 
    goto again; 
   exit_failure("socket(accept): %s", strerror(errno)); 
   /*NOTREACHED*/ 
  } 
 
  /* MRO: get the client's address */ 
  memcpy(&mySock->clientAddr, &srcaddr, srcaddr.sin6_len); 
 
  child_pid = fork(); 
   
  if (child_pid == 0) { 
   /* child process */ 
   close(s_wld); 
   closelog(); 
   openlog(logname, LOG_PID | LOG_NOWAIT, LOG_DAEMON); 
   play_child(s_src, (struct sockaddr *)&srcaddr); 
   exit_failure("should never reach here"); 
   /*NOTREACHED*/ 
  } 

else { 
   /* parent process */ 
   close(s_src); 
   if (child_pid == -1) 
    syslog(LOG_ERR, "can't fork"); 
  } 
 } 
 goto again; 
} //end play_service 
 
/********************************************************************** 
* MRO 
* Function:  play_child 
* Description: Calls the functions that ensure the connection should 
*   be forwarded, then calls the tcp relay function. 
**********************************************************************/ 
static void 
play_child(int s_src, struct sockaddr *srcaddr) 
{ 
 struct sockaddr_in6 dstaddr6; /* destination address */ 
 struct sockaddr_in6 *sa; 
 char sad[NI_MAXHOST]; 
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 char src[NI_MAXHOST]; 
 char dst6[NI_MAXHOST]; 
 int len = sizeof(dstaddr6); 
 int s_dst, error, hport, nresvport, on = 1; 
 struct timeval tv; 
  
 struct addrinfo hints, *res; 
 
 tv.tv_sec = 1; 
 tv.tv_usec = 0; 
 
 getnameinfo(srcaddr, srcaddr->sa_len, 
  src, sizeof(src), NULL, 0, NI_NUMERICHOST); 
 syslog(LOG_INFO, "accepted a client from %s", src); 
 
 error = getsockname(s_src, (struct sockaddr *)&dstaddr6, &len); 
 if (error == -1) { 
  exit_failure("getsockname: %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } 
 
 getnameinfo((struct sockaddr *)&dstaddr6, len, 
  dst6, sizeof(dst6), NULL, 0, NI_NUMERICHOST); 
 syslog(LOG_INFO, "the client is connecting to %s", dst6); 
 
 /* MRO: for now, the destination is always the server */  
 memset(&hints, 0, sizeof(hints)); 
        hints.ai_flags = AI_NUMERICHOST; 
        hints.ai_family = AF_INET6; 
        hints.ai_socktype = SOCK_STREAM; 
        hints.ai_protocol = 0; 
 
        error = getaddrinfo(serverAddr, service, &hints, &res); 
        if (error) 
                exit_failure("getaddrinfo: %s", gai_strerror(error)); 
 
 sa = (struct sockaddr_in6 *)res->ai_addr; 
 
 getnameinfo((struct sockaddr *)sa, sa->sin6_len, 
                sad, sizeof(sad), NULL, 0, NI_NUMERICHOST); 
  
 /* MRO: if substitution fails, don't forward connection */ 
 if (!fwd_choice((struct sockaddr_in6 *)srcaddr)) { 
  close(s_src); 
  exit_success("Did not forward connection"); 
 } //end if 
 
 /* 
  * Forward the connection  
  */ 
 
 syslog(LOG_INFO, "The forwarder is connecting to %s", sad); 
 
 setproctitle("child on port %s, %s -> %s", service, src, 
   serverAddr); 
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 hport = ntohs(((struct sockaddr_in6 *)&dstaddr6)->sin6_port); 
 
 switch (hport) { 
 case RLOGIN_PORT: 
 case RSH_PORT: 
  s_dst = rresvport_af(&nresvport, sa->sin6_family); 
  break; 
 default: 
  if (pflag) 
   s_dst = rresvport_af(&nresvport, sa->sin6_family); 
  else 
   s_dst = socket(res->ai_family, res->ai_socktype, 
     res->ai_protocol); 
  break; 
 } 
 if (s_dst < 0) { 
  exit_failure("socket(s_dst): %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } 
 
 error = setsockopt(s_dst, SOL_SOCKET, SO_OOBINLINE, &on, 

sizeof(on)); 
 if (error < 0) { 
  exit_failure("setsockopt(SO_OOBINLINE): %s", 

strerror(errno)); 
  //NOTREACHED 
 } 
 
 error = setsockopt(s_src, SOL_SOCKET, SO_SNDTIMEO, &tv, 

sizeof(tv)); 
 if (error < 0) { 
  exit_failure("setsockopt(SO_SNDTIMEO): %s", 

strerror(errno)); 
  //NOTREACHED 
 } 
 error = setsockopt(s_dst, SOL_SOCKET, SO_SNDTIMEO, &tv, 

sizeof(tv)); 
 if (error < 0) { 
  exit_failure("setsockopt(SO_SNDTIMEO): %s", 

strerror(errno)); 
  //NOTREACHED 
 } 
 
 
 error = connect(s_dst, res->ai_addr, res->ai_addrlen); 
 if (error < 0) { 
  switch (errno) { 
                        case EAFNOSUPPORT: 
                                syslog(LOG_WARNING, 

"error: EAFNOSUPPORT"); 
                                break; 
                        case EBADF: 
                                syslog(LOG_WARNING, "error: EBADF"); 
                                break; 
                        case ENOTSOCK: 
                                syslog(LOG_WARNING, "error: ENOTSOCK"); 
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                        case EADDRNOTAVAIL: 
                                syslog(LOG_WARNING, 

"error: EADDRNOTAVAIL"); 
                                break; 
                        case EADDRINUSE: 
                                syslog(LOG_WARNING, 

"error: EADDRINUSE"); 
                                break; 
                        case EACCES: 
                                syslog(LOG_WARNING, "error: EACCES"); 
                                break; 
                        case EFAULT: 
                                syslog(LOG_WARNING, "error: EFAULT"); 
                                break; 
                        default: 
                                break; 
                } //switch 
 
  exit_failure("connect: %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } //end if 
 
 tcp_relay(s_src, s_dst, service); 
 
} //end play_child 
 
/********************************************************************** 
* MRO 
* Function:  fwd_choice 
* Description: Ensures the connection is from the client’s known 
*   IPv6 address. 
**********************************************************************/ 
/* 0: don't forward, 1: forward */ 
static int 
fwd_choice(struct sockaddr_in6 *src) 
{ 
 struct sockaddr_in6 *my6; 
 char addrbuf[NI_MAXHOST]; 
 
 /* 
  * if data is from client, then forward it to the server, 
  * else do not service it. 
 */ 
 getnameinfo((struct sockaddr *)src, 
  src->sin6_len, addrbuf, 
  sizeof(addrbuf), NULL, 0, 
  NI_NUMERICHOST); 
 
 if (!strcmp(clientAddr, addrbuf)) { /* if equal */ 
  if (!subSrcAddr(src)) { 
   syslog(LOG_INFO, "subSrcAddr failed!"); 
   return 0; 
                } //end if 
    
  return 1; 
 } 
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 /* MRO: should never reach here, but default is fail */ 
 return 0; 
 
} //end fwd_choice 
 
 
 
 
 
/********************************************************************** 
* MRO 
* Function:  subSrcAddr 
* Description: Copies, perhaps unnecessarily, it’s own address into 
*   the source address field of the connected socket 
**********************************************************************/ 
/* 0: fail, 1: success */ 
static int 
subSrcAddr(struct sockaddr_in6 *source) 
{ 
 char srcbuf[NI_MAXHOST]; 
 
 memcpy(source, &mySock->tpe_s, mySock->tpe_s.sin6_len); 
 
 getnameinfo((struct sockaddr *)source, 
  source->sin6_len, srcbuf, sizeof(srcbuf), 
  NULL, 0, NI_NUMERICHOST); 
 syslog(LOG_INFO, "New source address is %s", srcbuf); 
  
 if (IN6_ARE_ADDR_EQUAL(&source->sin6_addr, 
            &mySock->tpe_s.sin6_addr)) { 
                syslog(LOG_INFO, "subSrc verified"); 
                return 1; 
        } //end if 
 
 return 0; /* fail */ 
} 
 
 
 
/********************************************************************** 
* MRO 
* Function:  grab_myaddrs 
* Description: Simply walks through all local addresses and stores 
*   the relevant ones. 
**********************************************************************/ 
static void 
grab_myaddrs() 
{ 
 struct ifaddrs *ifap, *ifa; 
 struct sockaddr_in6 *sin6, *mysin6; 
 char tpe_s[NI_MAXHOST]; 
char tpe_c[NI_MAXHOST]; 
 
 /* get a list of all addresses */ 
 if (getifaddrs(&ifap) != 0) { 
  exit_failure("getifaddrs"); 
  /*NOTREACHED*/ 
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 } 
 
 for (ifa = ifap; ifa; ifa = ifa->ifa_next) { 
 
                switch (ifa->ifa_addr->sa_family) { 
                case AF_INET: 
    continue; /* ignore IPv4 addresses */ 
                case AF_INET6: 
                        break; 
                default: 
                        continue; 
                } 
 
  /* MRO: store my server side address and log it */ 
  if (!strcmp(ifa->ifa_name, ifServ)) { /* if equal */ 
   mysin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 
 
   if (IN6_IS_ADDR_SITELOCAL(&mysin6->sin6_addr)) { 
    memcpy(&mySock->tpe_s, mysin6, 
     mysin6->sin6_len); 
 
    getnameinfo((struct sockaddr *)&mySock->tpe_s, 
     mySock->tpe_s.sin6_len, tpe_s, 
     sizeof(tpe_s), NULL, 0, 
     NI_NUMERICHOST); 
    syslog(LOG_INFO, "tpe_s address is %s", tpe_s); 
   } 
  } 
 
 /* MRO: store my client side site-local address and log it */ 
  if (!strcmp(ifa->ifa_name, ifClient)) { 
   mysin6 = (struct sockaddr_in6 *)ifa->ifa_addr; 
 
   if (IN6_IS_ADDR_SITELOCAL(&mysin6->sin6_addr)) { 
     memcpy(&mySock->tpe_c, mysin6, 
                                        mysin6->sin6_len); 
  
    getnameinfo(ifa->ifa_addr, 
     ifa->ifa_addr->sa_len, 
     tpe_c, 
     sizeof(tpe_c), 
     NULL, 0, NI_NUMERICHOST); 
 
    syslog(LOG_INFO, "tpe_c address is %s", 
     tpe_c); 
 

} //end if 
  } //end if 
 
 } //end for 
 
 freeifaddrs(ifap); 
} //end grab_myaddrs 
 
 
/********************************************************************** 
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* faithd program  
**********************************************************************/ 
 
 
static void 
sig_child(int sig) 
{ 
 int status; 
 pid_t pid; 
 
 pid = wait3(&status, WNOHANG, (struct rusage *)0); 
 if (pid && WEXITSTATUS(status)) 
  syslog(LOG_WARNING, "child %d exit status 0x%x", pid, 
status); 
} 
 
void 
sig_terminate(int sig) 
{ 
 free(mySock); 
 
 syslog(LOG_INFO, "Terminating faith daemon");  
 exit(EXIT_SUCCESS); 
} 
 
static void 
start_daemon(void) 
{ 
#ifdef SA_NOCLDWAIT 
 struct sigaction sa; 
#endif 
 
 if (daemon(0, 0) == -1) 
  exit_stderr("daemon: %s", strerror(errno)); 
 
#ifdef SA_NOCLDWAIT 
 memset(&sa, 0, sizeof(sa)); 
 sa.sa_handler = sig_child; 
 sa.sa_flags = SA_NOCLDWAIT; 
 sigemptyset(&sa.sa_mask); 
 sigaction(SIGCHLD, &sa, (struct sigaction *)0); 
#else 
 if (signal(SIGCHLD, sig_child) == SIG_ERR) { 
  exit_failure("signal CHLD: %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } 
#endif 
 
 if (signal(SIGTERM, sig_terminate) == SIG_ERR) { 
  exit_failure("signal TERM: %s", strerror(errno)); 
  /*NOTREACHED*/ 
 } 
} 
 
static void 
exit_stderr(const char *fmt, ...) 
{ 
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 va_list ap; 
 char buf[BUFSIZ]; 
 
 va_start(ap, fmt); 
 vsnprintf(buf, sizeof(buf), fmt, ap); 
 va_end(ap); 
 fprintf(stderr, "%s\n", buf); 
 exit(EXIT_FAILURE); 
} 
 
void 
exit_failure(const char *fmt, ...) 
{ 
 va_list ap; 
 char buf[BUFSIZ]; 
 
 va_start(ap, fmt); 
 vsnprintf(buf, sizeof(buf), fmt, ap); 
 va_end(ap); 
 syslog(LOG_ERR, "%s", buf); 
 exit(EXIT_FAILURE); 
} 
 
void 
exit_success(const char *fmt, ...) 
{ 
 va_list ap; 
 char buf[BUFSIZ]; 
 
 va_start(ap, fmt); 
 vsnprintf(buf, sizeof(buf), fmt, ap); 
 va_end(ap); 
 syslog(LOG_INFO, "%s", buf); 
 exit(EXIT_SUCCESS); 
} 
 
static void 
update_myaddrs() 
{ 
 char msg[BUFSIZ]; 
 int len; 
 struct rt_msghdr *rtm; 
 
 len = read(sockfd, msg, sizeof(msg)); 
 if (len < 0) { 
  syslog(LOG_ERR, "read(PF_ROUTE) failed"); 
  return; 
 } 
 rtm = (struct rt_msghdr *)msg; 
 if (len < 4 || len < rtm->rtm_msglen) { 
  syslog(LOG_ERR, "read(PF_ROUTE) short read"); 
  return; 
 } 
 if (rtm->rtm_version != RTM_VERSION) { 
  syslog(LOG_ERR, "routing socket version mismatch"); 
  close(sockfd); 
  sockfd = 0; 
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  return; 
 } 
 switch (rtm->rtm_type) { 
 case RTM_NEWADDR: 
 case RTM_DELADDR: 
 case RTM_IFINFO: 
  break; 
 default: 
  return; 
 } 
 /* XXX more filters here? */ 
 
 syslog(LOG_INFO, "update interface address list"); 
 grab_myaddrs(); 
} 
 
static void 
usage() 
{ 
 fprintf(stderr, "usage: %s [-dp] [-f conf] service [serverpath 
[serverargs]]\n", myseatrname); 
 
 exit(0); 
} 

66 



INITIAL DISTRIBUTION LIST 
 
 

1. Defense Technical Information Center 
Ft. Belvoir, VA  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, CA  
 

3. Dr. Cynthia Irvine 
Naval Postgraduate School 
Monterey, CA 
 

4. Thuy D. Nguyen 
Naval Postgraduate School 
Monterey, CA 

 
5. Joanne Kim 

Naval Postgraduate School 
Monterey, CA 
 

6. Timothy Levin 
Naval Postgraduate School 
Monterey, CA 
 

7. David Shifflett 
Naval Postgraduate School 
Monterey, CA 

 
8. Richard Harkins 

Naval Postgraduate School 
Monterey, CA 

 
9. Dr. Ernest McDuffie 

National Science Foundation 
Arlington, VA 
 

10. RADM Zelebor 
N6/Deputy DON CIO 
Arlington, VA 
 

11. Russel Jones 
N641 
Arlington, VA 
 

67 



12. David Wirth 
N641 
Arlington, VA 
 

13. CAPT Sheila McCoy 
Headquarters U.S. Navy 
Arlington, VA 
 

14. CAPT Robert Zellmann 
CNO Staff N614 
Arlington, VA 
 

15. Dr. Ralph Wachter 
ONR 
Arlington, VA 
 

16. Dr. Frank Deckelman 
ONR 
Arlington, VA 
 

17. Richard Hale 
DISA 
Falls Church, VA 
 

18. George Bieber 
OSD 
Washington, DC 
 

19. Deborah Cooper 
DC Associates, LLC 
Roslyn, VA 

 
20. David Ladd 

Microsoft 
Redmond, WA 
 

21. Marshall Potter 
Federal Aviation Administration 
Washington, DC 
 

22. Ernest Lucier 
Federal Aviation Administration 
Washington, DC 
 

68 



23. Keith Schwalm 
DHS 
Washington, DC 
 

24. RADM Joseph Burns 
Fort George Meade, MD 
  

25. Howard Andrews 
CFFC 
Norfolk, VA 

  
26. Steve LaFountain 

NSA 
Fort Meade, MD 
  

27. Penny Lehtola 
NSA 
Fort Meade, MD 

 
28. ENS Matthew O’Neal 

Student, Naval Postgraduate School 
Monterey, CA 
 

69 


	I.INTRODUCTION
	A.PURPOSE OF STUDY
	B.OVERVIEW OF CHAPTERS
	1. Chapter II, “The Monterey Security Enhanced Ar
	2.Chapter III, “The Internet Protocol”
	3.Chapter IV, “Implementation of IPv6 MYSEA Proto
	4.Chapter V, “Conclusions and Future Work”


	II.THE MONTEREY SECURITY ENHANCED ARCHITECTURE (MYSEA)
	A. THE REASON FOR MYSEA
	B. DESIGN AND COMPONENTS
	1. The MYSEA Server
	2. The MYSEA Workstation
	3.The Trusted Path Extension (TPE)

	C.QUALITY OF SECURITY SERVICE (QOSS)

	III.THE INTERNET PROTOCOL
	A. INTERNET PROTOCOL VERSION FOUR (IPV4)
	1.Motivation
	2.Header Structure
	a.Options

	3.Security
	4.Addressing Architecture
	5.Network Address Translation (NAT)
	a.NAT Defined
	b.NAT & MYSEA


	B.INTERNET PROTOCOL VERSION SIX (IPV6)
	1.General Changes to the IP Design
	2.IPv6 Headers
	3.Addressing Architecture
	a. Basic Differences from IPv4 Addressing
	b.General Addressing Information

	4.Security

	C.INTERNET PROTOCOL SECURITY (IPsec)
	1.Design
	a.Goal
	b.How IPsec Provides Desired Services

	2.QoSS
	a.Transitioning QoSS Capabilities to IPv6 in MYSEA


	D.IPV4 VERSUS IPV6
	1.The Superior Design
	2.A Head to Head Comparison
	3.Conclusion of the Comparison

	E.THE IPV4-TO-IPV6 TRANSITION
	1.Transition Mechanisms
	2.Transition Mechanisms & MYSEA


	IV.IMPLEMENTATION OF IPV6 MYSEA PROTOTYPE
	A.IPV4 PROTOTYPE
	1.Design
	a.Design Choices for the IPv4 Server
	b.Design Choices for the IPv4 TPE
	c.Design Choices for the IPv4 Client

	2.Implementation
	a.Setup of the IPv4 Server
	b.Setup of the IPv4 Trusted Path Extension (TPE)
	c.Setup of the IPv4 Client
	d.Verification of IPv4 MYSEA Functionality on Three PCs


	B.IPV6 PROTOTYPE
	1.Design
	2.Implementation
	a.Enable Network Communications
	b.Port Applications to IPv6
	c.Considerations before Implementing NAT Functionality in IPv6
	d.Implementation of IPv6 NAT Functionality

	3.Implications of Performing Proxy Translation Vice True NAT


	V.CONCLUSIONS AND FUTURE WORK
	A.THE FACTS ABOUT MYSEA AND IP
	1.Concerns with IPv4
	2.The Potential within IPv6
	a.Design
	b.Addressing
	c.Security
	d.QoSS

	3.The Impending Transition and MYSEA

	B. FUTURE WORK
	1.Solve the NAT Problem
	2.Research on a Hybrid IPv4 and IPv6 Network
	3.Technical Work
	4.Work on QoSS


	LIST OF REFERENCES
	APPENDIX
	INITIAL DISTRIBUTION LIST

